
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–??
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A Domain-Specific Modeling Approach to Realizing User-Centric
Communication

Yali Wu1∗, Andrew A. Allen1, Frank Hernandez1, Robert France2, Peter J. Clarke1

1 School of Computing and Information Sciences, Florida International University,Miami, FL 33199, USA
2 Department of Computer Science, Colorado State University, Fort Collins, CO80532, USA

SUMMARY

Advances in communication devices and technologies are dramatically expanding our communication
capabilities and enabling a wide range of multimedia communication applications. The current approach
to develop communication-intensive applications results in products that are fragmented, inflexible and
incapable of responding to changing end-users’ communication needs. These limitations have resulted
in a need for a new development approach of building communication applications that are driven
by end-users and that support the dynamic nature of communication-based collaboration. To address
this need, the Communication Virtual Machine (CVM) technology has been developed to support rapid
specification and automatic realization of user-centric communication applications based on a domain-
specific modeling approach. The CVM technology consists of a domain-specific modeling language
(DSML), the Communication Modeling Language (CML), that is used to create communication models,
and a semantic rich platform, the CVM, that realized the created communication models.
In this paper, we report on our experiences of applying a systematic approach to engineering CML and
the synthesis of CML models in CVM. Based on a feature model describing the taxonomy of the user-
centric communication domain in a network independent manner, we develop the meta-model of CML
and its different concrete syntaxes. We also present a behavioral specification (dynamic semantics) of
CML that enables the dynamic synthesis of user-centric communication models into an executable form
called communication control script. We validated the CML semantics using Kermeta, a meta-programming
environment for engineering DSMLs, and evaluated the practicality of our approach using a CVM prototype
and a set of experiments.
Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Domain-Specific Modeling Language, Meta-Models, Model-Driven Development, User-
Centric Communication

1. INTRODUCTION

Advances in communication devices and technologies (e.g. iPhone [1], iPad[2] and Android [3]) are
dramatically expanding our communication capabilities and enabling a wide range of multimedia
communication applications. Examples range from general-purpose applications that support voice
calls, video conferencing, and instant messaging using a one-size-fits-all approach, to specialized
applications in disaster management, distant learning and telemedicine. It is likely that the pace
of innovation of new communication applications will accelerate even further. However, many
of these applications have been conceived, designed and custom-built using a silo approach with
little connection to each other, resulting in fragmented and incompatible technologies [4]. The

∗E-mail: ywu001@cis.fiu.edu
∗Correspondence to: School of Computing and Information Sciences, Florida International University,Miami, FL 33199,
USA

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 Y. WU ET AL.

Traditional Stovepipe Approach Open APIs Approach User-Centric Approach

JAIN-SIP

Self-

Configuration

XML Based

Script

Graphical

SCE

Graphical

SCE
Dynamic

Adaption

Protocol Level

Programming

Formal Description

Language

Parlay SDK

import net.sourceforge.peers.Logger;

import net.sourceforge.peers.sip.Utils;

public SIPAdapter()

{

super.fwName = "Asterisk";

userAgent = new UserAgent();

thread = new Thread(new Runnable() {

public void run() {

userAgent.getUas(). getInitialRequestManager().

getInviteHandler().addObserver(SIPAdater.this);}

PStringArray Cmd = cmd.Tokenise(" ",FALSE);

if (Cmd[0] == "c") {

if (!endpoint->currentCallToken.IsEmpty())

cout << "Cannot make call whilst call in

progress\n";

else {

PString str = Cmd[1].Trim();

endpoint->MakeCall(str, endpoint->

currentCallToken);}}

else if (cmd.FindOneOf("HYN0123456789ABCDES")

!= P_MAX_INDEX)

Decreasing Complexity, Increasing Flexiblity

User-Driven

Creation

Telecomm.

Expert

IT

Developer

Domain

User

Figure 1. Paradigm shift in developing communication services/applications.

growing heterogeneities of network infrastructure and communication platforms make it both time-
consuming and error-prone to develop new communications applications entirely from scratch.
Much of the cost and effort stems from the fact that the heterogeneities and complexities of network-
level communication control and media delivery are tightly bound with the diversity of application-
dependent collaboration logic. This tight coupling also results in applications that are incapable of
responding to changing user needs and the dynamics of underlying networks or devices.

To effectively decouple the development of application logic from the network infrastructure,
different initiatives have developed open APIs or application frameworks that allow for
rapid creation and deployment of converged communication services. These approaches
(e.g.,OSA/Parlay[5], JAIN-SLEE[6], and JAIN-SIP[7]) reduced the complexity of service creation
by exposing a single point of interfacing with multiple protocols and resources. However,
the creation of communication applications are still limited to IT developers who have to
manually invoke these interfaces to program client-side applications (with potentially sophisticated
collaborative logic). There is a strong demand for an easy and flexible way of building
communication applications that are driven by end-users and that support the dynamic nature of
communication-based collaboration. The user-centric service creation approach has emerged to
address this need. Figure 1 summarizes this paradigm shift in creating and realizing communication-
intensive services or applications. This evolution is also accompanied by increasing flexibility and
decreasing complexity of the development process.

One initiative to realize the user-centric approach of creating communication applications is the
Communication Virtual Machine (CVM) technology developed by Deng et al. [8]. CVM supports
the rapid conception, specification and realization of communication applications through the use
of a domain-specific modeling approach. The CVM technology consists of a domain-specific
modeling language (DSML), the Communication Modeling Language (CML), that is used to
create communication models, and a semantic rich platform, the CVM, that realized the created
communication models. This approach shields end-users from the complexities and heterogeneities
of underlying communication technologies. We use the term user-centric communication to refer
to communication applications or systems that are driven by end-users and mask device and
application complexity while preserving the diversity and power of advanced communication
tools [9]. While the term “user-centric” has a broad scope covering issues like flexibility and
adaptability to user needs and context awareness, in this paper we limit the definition to the scope of

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 3

the aforementioned issues based on end-user driven specification of communication applications.
User-centric service creation reduces the amount of effort required to specify communication
applications. To assist in measuring aspects of user-centricity related to DSMLs, Wu et al. [10]
are currently exploring metrics, such as modeling effort, cognitive effort, and scaffolding effort,
among others.

In this paper we report on our experiences of applying a systematic approach to the engineering
of CML. Starting from a domain analysis of end-user driven communication applications from
the healthcare domain, we produce a feature model that identifies basic primitives for specifying
end-user’s communication needs. The feature model is then used to develop a meta-model that
describes core CML elements. We also present a comprehensive behavioral specification of CML
using label transition systems to describe the dynamic semantic of CML models. Finally, we present
the implementation of the CVM prototype adhering to the four-layered architectural design[8].
The performance of the dynamic synthesis is evaluated by a series of experiments. The major
contributions of this paper are as follows:

1. Application of a systematic approach to engineering a DSML for user-centric communication,
including the development of:

• a feature model describing the characteristics of user-centric communication
• a meta-model for the domain-specific model language (CML)
• a comprehensive behavioral specification of CML that enables dynamic synthesis of

CML models

2. Prototypical implementation of the CVM platform
3. An evaluation of dynamic synthesis of CML models using the CVM prototype.

In contrast to previous work on CML that described certain aspects of the language design and
presented these aspects in a very general way [11, 8, 12], we present a systematic and comprehensive
approach to engineering CML. Clarke et al. [11] presented the first version of CML without defining
the complete meta-model (abstract syntax and static semantics). Also, the initial version of CML has
since evolved dramatically. Deng et al. [8] described the CVM technology more from a conceptual
point of view without adequate details to sufficiently define CML as a DSML. Wang et al. [12] made
the first attempt in defining the behavioral specification for CML. In this paper we provide a more
comprehensive definition of the CML metamodel, and extend the semantics to include algorithms
for coordinating the dynamic synthesis and a complete behavioral specification. We also provide
implementation details of the synthesis process in CVM based on the behavioral specification.

In the next section we present a healthcare scenario to further motivate the problem. Section 3
describes the work related to user-centric communication and model driven initiatives applied to
communication services. Section 4 describes our approach to developing CML. Section 5 presents
the behavioral specification (dynamic semantics) used to dynamically synthesize CML models and
validates the specification by model simulation. Section 6 describes the CVM prototype and Section
7 describes our experimental approach to evaluate dynamic synthesis using the CVM prototype.
Section 8 presents our concluding remarks and future directions of this research.

2. MOTIVATION

The development of the initial version of the CVM was motivated in part by electronic
communication problems that health professionals at the Miami Children’s Hospital (MCH)
experienced during their daily routines. Dr. Burke [13], Director of Cardiovascular Surgery at MCH,
observed that setting up a conference call with other doctors using a variety of communication
devices, and securely transferring patient data during the conference call is challenging. One
scenario that illustrates the challenges facing healthcare professionals is given below:

Motivating Scenario: Baby Jane, who appears to have a heart condition, has been referred to
MCH by Dr. Sanchez for observation and additional tests. Dr. Burke, chief cardiovascular surgeon

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

4 Y. WU ET AL.

at MCH, has determined to perform surgery on her the following day. After Dr. Burke performs
the surgery, he returns to his office and contacts Dr. Monteiro, the attending physician, to let him
know how the surgery went. During the conversation, Dr. Burke brings Dr. Sanchez, the referencing
physician, into the call. Dr. Burke then decides to share several aspects of Jane’s medical record
with him, including the post-surgery echocardiogram (echo), images of the patient’s heart captured
during the surgery, and the vital signs. Dr. Burke then invites Ms. Smith, a nurse practitioner, to join
the conference to discuss and outline the post-surgery care for Baby Jane that should be followed
by Dr. Monteiro at MCH for the next two weeks.

Supporting such a scenario requires voice/video conferencing, compiling the data to be shared,
exchanging different types of data (e.g., text, image, and video) in the patient‘s discharge package,
access to medical information systems and logging the consultation for later reference. Clearly,
realizing the above scenario is possible with today‘s technology. Dr. Burke would have to cobble
together different communication technologies as follows: (1) he would place a phone call to reach
Dr. Monteiro; (2) assuming Dr. Burke’s phone has conferencing capability, he has to switch to
a conference call to include Dr. Sanchez in the call, otherwise, they have to use a conferencing
application such as Skype [14]; (3) Dr. Burke would then use a separate telemedicine application to
compile the data from baby Jane‘s patient record and share it with Dr. Monteiro and Dr. Sanchez
in real-time. In case they do not have access to such an application, Dr. Burke may need to extract
parts of the record into a file and send them separately via email or a file sharing application.

Customized communication applications could also be developed using traditional approaches
to support such scenarios. However, as mentioned before, the communication needs of such
applications are usually hard-coded based on the implementation of the underlying network
protocols and architecture. Therefore, the resulting applications would be inflexible and costly.
Although open service APIs and application frameworks could ease the service creation process,
a full development cycle is still required. Also, the resulting applications would not be able to
accommodate unanticipated communication needs without incurring another development cycle.

The root cause to the above problems is the lack of a systematic, easy and flexible way of
developing communication applications that are reconfigurable and adaptive at the user level.
Providing the right level of abstraction to the end-user e.g., medical personnel, and making use of the
available model-driven software engineering technologies e.g., DSMLs, provide us with a solution
to this problem. We argue that using the CML language and CVM platform makes it easier to
express user-level communication needs. CML is intended to target domain experts, persons within
a communication-intensive application domain (e.g., healthcare) that have some IT knowledge, but
are not software engineers or programmers. Through working with a DSML that is closer to the
application domain, domain experts could achieve improved development productivity.

3. RELATED WORK

In this section we review three categories of related work including converged and user-centric
communication, model driven approaches for communication and the state of the CVM technology
prior to this paper. The only work, to the best of our knowledge, directly related to our work is the
previous work on CVM.

3.1. Converged and User-Centric Communication

The trend for service convergence and user-centricity has been around for some time. Traditional
telecommunication services like OSA/Parlay[5], JAIN-SLEE[6], and JAIN-SIP[7] provide open
APIs or application frameworks that abstract the underlying network or the programming
technology and enabled the convergence over wired, wireless, multimedia broadcasting and IP
network. They simplified service creation by reducing the amount of telecommunication knowledge
required for building communication solutions. However, developers are still required to use a
general programing language such as Java in their respective IDEs to invoke such interfaces and

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 5

create a functional composition. The programing-level nature of these APIs or frameworks make
them complex to use, and less usable than the user-level sessions of CVM, see Figure 1.

In the context of Service-Oriented Architecture(SOA), CVM serves as a client-side architecture,
as opposed to server-side frameworks such as OSA/Parlay[5] and JAIN-SIP[7]. The server-side
architecture has different concerns than the client-side architecture, which is the focus of CVM.
As end-hosts are capable of handling sophisticated collaborative logic in IP networks, client-
side architecture is getting as important and complicated as server-side architecture in building
next-generation multimedia communication applications. Client-side architecture is becoming
increasingly pertinent as more and more communication applications are deployed and executed on
mobile devices. A big issue for developing communication software on mobile devices is the variety
of platforms. For example, to develop communication applications on smart phones, two major
platforms are iOS and Android. The CVM architecture, being inherently platform-independent,
could be hosted on various mobile platforms.

Industrial user-centric communication initiatives have been described in different contexts
such as: providing various customized communication services like teleconferencing and data
services to businesses in specific domains [15, 9], modeling of communication environments
[16], content applications that interact with communication sessions [17], and aligning user-
centric communication with the unified communication paradigm. Unified communication has
a similar objective to user-centric communication i.e., simplifying end-user experiences [18]. It
aims to provide a way to integrate audio, video and data technologies on IP networks and allow
switching among them while masking the complexities of heterogeneous back-end systems. These
technologies, however, usually cannot accommodate unanticipated communication needs without
first incurring a lengthy development cycle, resulting in a high cost to modify the functionality
and interfaces required. Also in these approaches, user-centricity focuses on enhancing end-user
experiences by providing rich yet easy-to-use communication applications. In our approach end-
users drive the specification of the communication applications using an intuitive notation that
provides them full control over the application functionality.

Recently, along with the emergence of Next Generation Networks (NGN), user-centricity has also
motivated various convergent environments that provide user-centric service creation and delivery
facilities. These include OPUCE (Open Platform for User-centric service Creation and Execution)
[19], SPICE (Service Platform for Innovative Communication Environment) [20], among others[21,
22]. These environments support the combination of Internet IT services with communication
services such as presence, voice calls and audio/video conferencing. They broadened the range of
service creators and show directions towards user-centricity. However, the users are still required to
choose or select the “base” services that they want to reuse, and build service mashups by composing
two or more “base”services. Also, since mashup execution is driven by event triggers, users have to
specify the service composition logic through a directed graph.

We argue that the CVM approach hides the details of service logic by presenting an abstract and
declarative interface that does not require imperative encoding. In CVM, end-users are not aware of
the specific set of services and resources available and only focused on their high-level application
needs. Service composition is made very natural by updating the CML model to incorporate
additional service specifications (such as transferring new media types and domain-specific forms).
The logic for orchestrating different services could be extended via workflow-like constructs and
is currently being investigated in [23]. In addition, there is a trade-off between domain-specificity
and service generality in CVM, so that it can adopt a lightweight execution engine instead of a
heavyweight open service creation and delivery platform.

3.2. Model Driven Initiatives For Communication

There have been various model driven initiatives for the communication domain. The MODATEL
project [24], for instance, represents an initiative to develop methodologies and tools to apply model
driven architectures (MDA) to the telecommunication domain. The MODATEL project is concerned
with using well-established modeling languages traditionally used in the telecommunication domain
within the context of the MDA. Initial endeavors include aligning OMG technologies (UML,

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

6 Y. WU ET AL.

MOF, XMI, QVT) [25] with telecommunication languages like Service Design and Description
Language (SDL) and Message Sequence Chart (MSC); reusing and integrating of MOF-based tools
for telecommunication languages; and building a UML profile for communicating systems. In the
MODATEL methodology, MDA tools apply a standard mapping to generate platform-specific model
(PSMs) from platform-independent models (PIMs). Using this approach some code is automatically
generated and some code is hand-written due to the fact that PIMs are not directly executable. Unlike
these general purpose model driven initiatives, we used a DSML approach to capture the user-level
communication needs. In addition, the models created by our DSML, CML, is directly executed by
a semantic rich platform, the CVM.

The idea of using domain-specific languages (DSLs) to specify robust and adaptable
communication services is not new. The Call Processing Language (CPL)[26], for instance, is a
DSL for programming Internet telephony services that provide abstractions over signaling protocols
and underlying systems. CPL could be used to quickly and safely specify call processing services
such as call forwarding and anonymous call rejection. The goal of CPL is to ease the development of
telephony services by providing users with domain-specific abstractions. Consel et. al [27] present a
paradigm based on DSLs that enables networking and telecommunication experts to quickly develop
robust variations of communication services within a particular domain(e.g., email processing,
remote document processing, telephony services). The authors developed a programmable platform
called Nova to execute the services of a particular domain written in respective DSLs. Burgy et al.
[28] developed a DSL, Session Processing Language (SPL), and a virtual machine that is centered
around the notion of a session in the Session Initiation Protocol.

Unlike these DSL approaches, which are mainly driven by abstractions over existing protocols or
programming level networking solutions, and hence are used by engineers to develop variations of a
family of telephony services, CML is designed to use the vocabulary of domain experts and focuses
on user intuitive concepts without being limited by technological considerations. CML does not
bear explicit relationships with existing service protocols or languages. Also, the semantics of CML
allow it to be dynamically adaptable to changing user needs.

3.3. CVM Technology

Deng et al. [8] introduced the Communication Virtual Machine (CVM) technology as a user-centric
communication initiative that supports the rapid conception, specification, and automatic realization
of communication applications. Their approach is based on the model-driven engineering paradigm.
Models of communication applications are specified using a DSML, Communication Modeling
language (CML), which are then realized using the CVM.

The initial version of CML was developed by Clarke et al. [11] and is designed as a declarative
language for specifying the needs of communication applications from the users’ point of view. The
following design goals for CML are identified: (1) simplicity: be simple and intuitive; (2) Network-
independence: be independent of network and device characteristics; and (3) expressiveness:
model a large majority of communication scenarios. The primitive operations required to realize
a communication application were identified based on an informal analysis of common scenarios
in the healthcare domain. These operations include connection establishment, transfer of data or
data stream, add/remove participants to/from a communication, group related data in a structure,
and close connection. There are two equivalent versions of CML: XML-based (X-CML) and
the graphical (G-CML). Two categories of communication models can be described using CML,
communication schemas and communication instances, similar to the relationship between use cases
and scenarios during requirements analysis. CML models are further classified as control schemas -
configuration required to set up one or more connections in a communication (participants and the
types of exchanged media); and data schemas - actual media (name or urls) to be exchanged during
a communication. We provide additional details of CML syntax in Section 4.

CVM was designed using a layered architecture with each layer playing a separate role in
realizing communication applications [8]. Figure 2 shows the layered architecture and the virtual
communication between two CVMs, the virtual communication is shown using dashed lines. The
four layers representing the different levels of abstraction in CVM include:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 7

User / Application (local)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM control / data Instances

(CML instances)

manages delivery of

comm. services

manages delivery of media

negotiation of

control instances

Legend

Control and Data Flow Virtual Communication

UI Input

CML Instances Comm. Instances

Control Script SE Events

API Calls UCM Events

API Calls NCB Events

User / Application (remote)

User Comm. Interface (UCI)

Synthesis Engine (SE)

User-Centric Comm.
Middleware (UCM)

Network Comm. Broker (NCB)

Comm. Frameworks

CVM

UI Updates

Figure 2. Layered architecture of the Communication Virtual Machine.

• User Communication Interface (UCI) - provides an environment where users can specify
their communication requirements using CML models as either schemas or instances. Only
communication instances can be realized by CVM.

• Synthesis Engine (SE) - negotiates the executing model with other participants in the
communication, initiates media transfer and generates an executable script (communication
control script) from a CML instance to be processed by the next layer.

• User-centric Communication Middleware (UCM) - executes the communication control
script to manage and coordinate the delivery of communication services to users, including
enabling/disabling streams and the transfer of atomic and structured data.

• Network Communication Broker (NCB) - provides a network-independent API to UCM and
works with the underlying network protocols or communication frameworks to realize the
actual communication.

Previous work by Deng et al. [8] lays the conceptual foundation for the work presented in
this paper. Other papers published on the CVM technology have reported on different aspects
of the research, such as the semantics to realize CML models developed by Wang et al. [12],
the initial implementation of the UCM by Wu et al. [29], the design and implementation of
the NCB by [30], and integrating autonomic capabilities into NCB by Allen et al. [31]. This
paper presents a systematic and comprehensive approach to engineering CML, which includes an
extension of the work by Wang et al. [12]. Wang et al. describe the operational semantics required
to negotiate/renegotiate CML instances with participants in a communication and the transfer of
media during communication. The semantics are specified using label transition systems (LTSs).
These LTSs specify how CML models are interpreted in the synthesis engine (SE), a layer in CVM.
The extension of the work by Wang et al. includes the definition of an algorithm that coordinates
the dynamic synthesis of multiple CML instances, and a more formalized behavioral specification.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

8 Y. WU ET AL.

Although the four-layered architecture for CVM was defined by Deng et al. [8], the CVM prototype
presented in this paper is the first implementation that follows this layered architecture.

4. CML - A DSML FOR USER-CENTRIC COMMUNICATION

Domain-specific modeling (DSM) is a development methodology that raises the level of abstraction
beyond coding by specifying solutions directly using domain concepts [32]. DSM languages
(DSMLs), therefore, offer substantial gains in expressiveness and ease of use compared with
general-purpose programming languages in their domain of application [33]. The claimed benefits
of DSMLs motivated us to design CML, a DSML that can be used to specify the requirements for
user-centric communication use cases or scenarios. The use cases are modeled as communication
schemas and the scenarios as communication instances, which are the communication applications
providing services to the end-user.

In this section we present the structural design of CML based on the results of a domain analysis,
including descriptions of the CML meta-model, and three concrete syntaxes. Unlike many DSMLs
that are converted to a lower-level language and then executed, CML models are directly executed
by CVM, and can be dynamically updated as a result of schema negotiation or a result of changes
in the user’s communication needs.

4.1. Domain Analysis

Over the past three years our group has been working with healthcare personnel at Miami Children’s
Hospital (MCH) to identify communication-intensive use cases. The doctors at MCH use a variety
of available communication technologies when collaborating, e.g., email, instant messaging and
video/teleconferencing, and problems arise when the technologies use different platforms and have
different providers that offer different services. Integration of the technologies in most cases requires
the doctors to be technology savvy and may require several applications to be cobbled together.
As a result of analyzing the communication needs at MCH, we identified several communication-
intensive scenarios, one of which is presented in Section 2.

From the identified set of scenarios, we perform domain analysis using the FODA (Feature-
Oriented Domain Analysis) [34] methodology to yield a taxonomy model for user centric
communication. The FODA methodology resulted in a feature model that captures commonalities
(mandatory features) and variabilities (variable features) of the domain. It also represents
a hierarchical decomposition of the features and their character, that is, whether they are
mandatory, alternative, or optional. Feature combination rules are also specified that describe which
combinations of features are valid or not.

We present the feature model as a feature diagram in Figure 3. The feature diagram shows the
relationships between the different classes of features in our scenarios. Note that the identified
features are by no means an exhaustive set. We chose essential features in order to build a minimal,
intuitive and adequately expressive first version of CML. Advanced features related to requested
properties for a connection or a particular data transfer are postponed for later versions of CML.
These features include quality of service policies (e.g., if bandwidth is low then do not send video
streams), security, access rights policies, and timing commands (e.g., transfer the sensor output
every 5 seconds).

Figure 3 shows the domain of user-centric communication service consisting of three features:
basic communication, coordinated communication and service management. Basic communication
involves (1) connection, (2) media (primitive and composite) (3) devices for supporting the
connection and media transfer, and (4) user behaviors for setting up the connection or initiating
data transfer. Connection includes participants in the connection and connection properties.
Coordinated Communication includes various control constructs for coordinating the behavior of
basic communication activities. The service management includes features related to loading, saving
and runtime adaption of communication services, and is usually offered by the service platform.
The rest of the concepts in the feature diagram are self-explanatory. We are currently working on

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 9

Communication

Service

User

Behavior

Composite

Media

Service

Management

LiveAudio

Security

Connection

structure
Privacy

Layout

Save Load

Coordinated

Communication

OptionalRequired
Combination of

features may exist

At least one of the

features must exist

Only one of the

features must exist

Key

SequenceChoiceIteration

Basic

Communication

Device Media

Participant
Device

Capabilities

Parallel

Adapt

NonStream

LiveVideo LiveAV

Stream

Atomic

Media

File Chat

TextFile BinaryFile

StreamFile NonStreamFile

VideoFile AVFile AudioFile

Access

Control
Encrypt

Qos

Request

Connect

Reject

Invite

Disconnect
Accept

invite Add

party

Remove

party

Connection

Setup

Properties

Timing SecurityQoS
SendReceive

Data

Transfer

Role

Figure 3. Feature oriented diagram for the communication domain.

extending CML to include coordinated communication, the extension will be referred to as Workflow
CML (WF-CML).

4.2. Meta-Model

Th feature diagram, shown in Figure 3, facilitates the design of CML, a DSML, by identifying the
potential constructs of the DSML. Deursen et al. in [35] described a systematic approach on how a
feature diagram can be mapped to a UML class diagram. Based on the guidelines by Deursen et al.
we developed the abstract syntax of CML using a class diagram, as shown in Figure 4.

The class diagram shows the various CML constructs that are used in modeling user-centric
communication. The root construct CommunicationSchema, is either a ControlSchema or
a DataSchema. A ControlSchema defines the static configuration of a communication which
is composed of one or more Connections, one or more attached parties (attachedParty)
and one or more data types (DataType). A Connection consists of one or more devices
Device, and one or more DataTypeRefs (representing a reference to a DataType specifying
the data/media that may be transmitted across the connection). Each AttachedParty has a
Person attached to a Device through the IsAttached construct. DataType is defined as
either a MediumType or a FormType. MediumType defines the particular type of the media
that is supported in this communication, whereas FormType presents a composite data structure
containing multiple medium types as well as user-defined attributes.

A DataSchema consists of an associated DataContent or Request. DataContent is
used to define the actual data/media the user transfers/enables through an active communication,
while Request is used to request for a media or a form structure. A medium is a piece of data or
a medium stream, like a Word document or a live video feed, respectively. The type of the medium
is defined in the mediumDataType attribute (a reference to MediumType class), which could be a
built-in type or user-defined type supported by the system. A mediumURL that contains the location
of the medium (e.g., a file location or a port for a data stream), as well as a suggestedApplication,
which defines the application that can be used to view or process a medium (e.g., Powerpoint for ppt
files). Composite data is represented using forms in CML, which are nested structures defined by
the FormType class. Form has an action attribute which defines a default action that is performed
on this medium during transfer. The actions “send” and “doNotSend” translate into automatic
transfer of the medium in the form or wait for the user to request the medium, respectively. The

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

10 Y. WU ET AL.

ControlSchema

-connectionID : EString

Connection

AttachedParty DataType

-deviceID : EString

-isVirtual : EBoolean

-isLocal : EBoolean

Device

-personID : EString

-personName : EString

-personRole : EString

Person

-capability : BuiltInType

DeviceCapability

+TextFile

+LiveAudio

+LiveVideo

+LiveAV

+Text

+AudioFile

+VideoFile

+AVFile

+NonStreamFile

«enumeration»

BuiltInType

-deviceID : EString

-personID : EString

IsAttached

-mediumTypeName : EString

-mediumURL : EString

-mediumSize : EString

-lastModifiedTime : EString

-validityPeriod : EString

-fileTransferTime : EString

-voiceCommand : EString

-derivedFromBuiltInType : BuiltInType

-source : EString

MediumType

-formTypeName : EString

-actionTF : ActionTypeForm

-suggestedApp : EString

-voiceCommand : EString

-layoutSpec : EString

-source : EString

FormType

controlSchema

1

conn1..*
controlSchema1

attachedParty1..*

1

person1..1

1

isAttached1..1

1

dataType1..*

1

deviceCaps1..*

-connectionID : EString

DataSchema

-requestID : EString

-requestAction : ActionTypeRequest

Request

-formDataType : EString

-formID : EString

-suggestedApp : EString

-voiceCommand : EString

-action : ActionTypeForm

-layoutSpec : EString

Form-mediumDataType : EString

-mediumName : EString

-mediumURL : EString

-mediumSize : EString

-lastModTime : EString

-validityPeriod : EString

-firstTransferTime : EString

-voiceCommand : EString

Medium

1
request0..1

1

subForm0..*

1
subMedium 1..*

-communicationID : EString

CommunicationSchema

+open

+save

«enumeration»

ActionTypeRequest

+send

+sendOnDemand

+secureSend

«enumeration»

ActionTypeForm

1
device1..*

DataTypeRef

-mediumTypeName : EString

MediumTypeRef

-formTypeName : EString

FormTypeRef

1

dataTypeRef1..*

DataContent

1

dataContent

0..1

1

subFormType

0..*

1

-subMediumType 0..*

-mediumName : EString

MediaRequest

-formID : EString

-mediumURL : EString

FormRequest

Figure 4. Abstract syntax for the CML control and data schemas represented as a class diagram.

“startApplication” action signals the system to open the suggested application of the data/medium
after it is received by a participant.

We use OCL [36] to specify the static semantics rules for CML, as shown in Figure 14 in
Appendix A. For instance, the first constraint is defined on the control schema, which indicates that
the communication id should be unique with a non-null value, and the communication should have
at least two parties, etc. The second constraint indicates that any media or form types associated
with a connection must be supported by the device capabilities of all involved parties within the
connection. The remaining constraints can be explained in similar manners.

4.3. Concrete Syntax

We designed three different representations of the concrete syntax of CML, namely the XML
version, the graphical version, and a user interface (UI-CML) version. The XML version (X-CML),
is an internal representation of the language that CVM understands and processes. The graphical
version (G-CML) is developed for domain experts to rapidly develop communication services with
user-intuitive concepts. The UI version presents an even simpler interface that allows casual users
to realize communication services by loading and executing pre-defined CML models, as well as
to visualize the progress of running services. We show screen shots for a three-way conference in
the motivating scenario using the three concrete syntaxes as follows: (1) G-CML, see Figure 15 in
Appendix B, (2) UI-CML, see Figure 16 in Appendix C, and (3) X-CML, see Figure 17 in Appendix

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 11

ConnectionID: C1

person
Name: Burke
UserID: burke23
Role: DP

DeviceID 001
isAttached isAttached

person
Name: Monteiro
UserID: monteiro41
Role: SC

DeviceID: 002

medium
LiveAudio

form
Discharge_Pack

medium
TextFile

medium
NonStreamFile

LiveAudio

TextFileVideoFile TextFileVideoFile

medium
VideoFile

NonStream LiveAudio NonStream

(a)

(b)

medium
LiveAudio
AV-C1

form
DisPkg_1
send

medium
xRay-Jane.jpg
D:Jane/xRay-Jane.jpg

medium
HeartEcho-Jane.mpg
D:Jane/HeartEcho-Jane.mpg

(c)

medium
LiveAudio
AV-C1

ConnectionID: C1 ConnectionID: C1

medium
RecSum-Jane.txt
D:Jane/RecSum-Jane.txt

Figure 5. G-CML representation for: (a) the control instance for the 2-way call between Dr. Burke and Dr.
Monteiro, (b) data instance to enable LiveAudio, (c) data instance to send the form DisPkg 1.

D. Note that Figure 16 represents a running instance of the scenario using a UI representation (UI-
CML), while Figure 15 and 17 show a graphical (G-CML) and a XML (X-CML) representation
of the CML instance respectively. Additional details on the concrete syntactical definitions are not
shown in this paper but can be found on our project website ∗.

To automate the transformation between different representations of CML, we borrowed
techniques used in model-driven engineering. Heckel and Voigt [37] state that pair grammars are
used to describe the source and target languages together with a correspondence between source
and target sentences. The authors show how pair grammars may be used to transform UML models
to BPEL4WS [37]. We use a similar approach to convert between different representations of
communication models. But our job is easier in that: (1) our paradigm tailors to a more restricted
domain thereby providing us with the capability of easily automating the transformation process,
and (2) since all these concrete syntaxes share the same abstract syntax of CML, the common meta-
model could be used to in the mapping process.

4.4. Illustrative Example

In this section we show how the patient discharge communication scenario mentioned in Section
2 may be modeled using CML. We show the models used during the realizing of the scenario.
Figure 5 shows the G-CML representations for the scenario. As discussed in the previous section,
the frequency of exchanging data during communication is much higher than updating the
communication configuration (e.g., list of participants, device capabilities), therefore we partition
a CML instance into a control part (configuration) and a data part (exchanged media). Note that
in practice the user only needs to create the G-CML or X-CML schema once, then for each
instantiation of the schema, the user assigns values to the entities of the schema, e.g., assign names
to participants and media.

Figure 5 shows several G-CML models (one control instance and two data instances) used by
Dr. Burke in this scenario. Dr. Burke interacts with the user-friendly UI similar to the one shown
in Figure 16, Appendix C. Figure 5(a) shows an instance of the control schema loaded by Dr.
Burke. The control schema is created using a G-CML editor similar to the one shown in Figure
15, Appendix B. The devices for all participants in this connection need to support live audio/video
streaming capabilities, as well as the transfer of patient discharge package.

∗http://www.cis.fiu.edu/cml/

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

12 Y. WU ET AL.

We represent composite data/media structures, such as a patient discharge package, using forms
in CML. The discharge package form is defined to be composed of three pieces of media: a
text file, a non-stream file and a video file. Detailed properties of the form (such as action or
layout specification) are not shown in the figure. Figure 5(b) is the data instance for enabling live
audio/video between Dr. Burke and Dr. Sanchez, while Figure 5(c) shows the data instance for
sending the discharge package. Note that the live audio/video stream is still enabled in Figure 5(c).

5. DYNAMIC SYNTHESIS OF CML MODELS

In this section we describe the behavioral model (dynamic semantics) of CML that enables dynamic
synthesis of user-centric communication applications expressed in CML. We first present an
overview of the process to dynamically synthesize CML models, and then express the high-level
semantics of CML models using a denotational style of semantics. The high-level semantics are
instantiated by synthesis algorithms and detailed state machines for negotiation and media transfer.
To partially validate the semantics, we simulated the CML models for several scenarios using a
meta-modeling framework that supports the execution of domain-specific models.

5.1. Overview

In this section we provide an overview of the process to dynamically synthesize CML models.
We use the term synthesis to refer to the automatic derivation of an executable form called
communication control script from a CML model; and dynamic refers to the possibility of runtime
updates to an executing CML model. These runtime updated may include adding new media types to
an executing communication application, or adding a new participant, which requires renegotiation.

To assist the reader in understanding the process of dynamic synthesis, we show the overall
realization process in Figure 6(a) and dynamic synthesis in Figure 6(b). Recall that realization
refers to the dynamic synthesis of control scripts from CML models and subsequent execution of
the behavior specified in CML models by executing these control scripts. As Figure 6(a) illustrates,
realization of CML models starts when the user loads and instantiates a CML model in UCI. The
realization process could be summarized as the following steps:

1. UCI validates the CML model and converts it into a control schema instance (CI) and a data
schema instance (DI) pair, which is passed to SE

2. SE, upon receiving the CML instance pair (CI, DI), analyzes and synthesizes it into a control
script to be executed by the UCM

3. UCM then executes the script and makes API calls to the NCB, which interfaces with the
underlying communication frameworks

4. NCB interacts with the communication frameworks and generates UCM or SE events that are
handled by their respective CVM layers.

In the above realization process that involves all CVM layers, SE is the layer that specifically
handles the dynamic synthesis. Figure 6(b) shows a block diagram representing the executing
processes in SE. The four major processes of SE include: SE Controller, Schema Analyzer,
Connectioni (representing the ith connection in the CML model), and SE Dispatcher [38]. We
describe the functionality of each component as follows:

• SE Controller: coordinates the execution of incoming CML instances by interacting with the
Schema Analyzer and Connection process. It also maintains and updates the SE environment
accordingly during dynamic synthesis.

• Schema Analyzer: performs an analysis of the input instance pair and extracts the changes in
the model, which are then fed into the Connection process.

• Connection: consists of (re)negotiation and media transfer processes. The negotiation process
handles the negotiation logic for a given connection instance, while the media transfer process
maintains the state of media transfer within the connection.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 13

UCI SE UCM NCB
schema (CI, DI) control Script API calls

UCM/SE eventsSE events

User

to/from Comm.
Frameworks

SE Controller

schema from UCI
(CI, DI)

(re)negotiationCI change object

media transfer

DI change Object
SE

Dispatcher

negotiation scripts,
CI, action reqs.

media trans. scripts,

DI, action reqs.
control scripts for UCM

Schema
Analyzer

schema (CI, DI)

Events from UCM
with (CI, DI)

schema for UCI

(CI, DI)

(a)

(b)

schema
change

schema (CI, DI)

Connectioni

Action requests to update SE Environment

Figure 6. (a) Execution of a schema in the CVM. (b) Execution of a schema in the synthesis engine (SE). CI
- Control instance; DI - Data exchange instance.

• SE Dispatcher: coordinates outgoing schemas to be displayed to UCI, control scripts to be
passed to UCM, and action requests invoked back to the SE controller for updating the SE
environment.

To visualize the process of dynamically synthesizing CML models, we show a series of CML
instances and the control scripts generated as a result of dynamic synthesis in Figure 7. The table
has three columns: the source of input, G-CML representations of the X-CML instances, and the
generated control scripts. The synthesis of these CML instances at runtime realized the scenario
described in Section 2. For easy readability, we only show a skeleton graphical version of the CML
instance. We also break down the realization of communication services into three phases: initial
negotiation of a two-way communication, enabling live audio/video, renegotiation into a three-way
communication, and the media transfer of the patient discharge form. Note that SE also utilizes its
environment during this process updating it accordingly, not shown in Figure 7.

We show the attributed grammar of the output control script language using EBNF-like notation
in Figure 8. The grammar contains productions for all of the script commands used in the control
script language. Rule 1 states that a control script consists of one or more script commands, and
Rule 2 shows the various script commands. The strings in bold represent the actual command,
and the attributes represent the parameters that the command can take. For example, Rule 3 states
that createConnectionCmd is composed of the string createConnection and takes one parameter
connection ID. The complete metamodel definitions for the control script language can be found on
our project website ∗.

5.2. Semi-formal Behavioral Model for Dynamic Synthesis

We formalize the behavioral model of dynamically synthesizing CML models using a labeled
transition system defined in terms of states (or configurations) stored in the SE environment, and
a transition relation. This behavioral model is an extension of the work presented by Wang et al.
[12]. The transition relation essentially specifies the rules for state changes based on the input CML
model and the SE environment. It also defines the mapping from the input CML model to the output

∗http://www.cis.fiu.edu/cml/

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

14 Y. WU ET AL.

Source Skeleton of input CML Output Control Script
Negotiation: (Establishing two-way communication)

UCI
Layer

createConnection(“C1”);

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI1, null”)

UCM Layer
(from

monteiro41)

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI2, null”)

addParticipant(“C1”, “monteiro41”)

monteiro41burek23 C1

CI1

CI2

monteiro41burek23 C1

ReNegotiation: (Establishing three-way communication)

UCI
Layer sendSchema(“C1”, “burke23”,

“monteiro41, sanchez12”, “CI3, DI3”)

UCM Layer
(from

monteiro41)

sendSchema(“C1”, “burke23”,
“monteiro41, sanchez12”, “CI5, DI3”)

addParticipant(“C1”, “sanchez12”)

monteiro41

burek23 C1
sahchez12

monteiro41

burek23 C1
sanchez12

CI3

CI4

NA

UCM Layer
(from

sanchez12)
monteiro41

burek23 C1
sanchez12

CI5

Media Transfer: Audio streaming

medium
LiveAudio

C1

UCI Layer

UCM Layer
(from

monteiro41)

C1

enableInitiator(“C1”, “LiveAudio”)

sendSchema(“C1”, “burke23”,
“monteiro41”, “CI2, DI1”)

enableReceiverMedia(“C1”, “LiveAudio”);
medium
LiveAudio

DI1

DI2

Media Transfer: Audio streaming and transfer of patient record

UCI
Layer

medium
LiveAV

form
Patient-Jane
send

medium
TextFile
URL: U:\burke23\files\vital_signs.pdf

medium
VideoFile
URL: U:\burke23\files\EcCard1.wmv

connID: C1

medium
NonStreamFile
URL: U:\burke23\files\heart_image.jpg

sendForm(“C1”, “Patient-Jane”,
“D:Jane/RecSum-Jane.txt”);

sendForm(“C1”, “Patient-Jane”,
“D:Jane/heartEcho-Jane.mpg”);

sendSchema(“C1”, “burke23”,
“monteiro41, sanchez12”, “CI5, DI5”);

...
...

...

Figure 7. CML models and control scripts used in the motivating scenario in Section 2.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 15

1. controlScript ::= command {command}

2. command := createConnectionCmd |

closeConnectionCmd | addParticipantCmd |

removeParticipantCmd | sendSchemaCmd |

enableMediaInitiatorCmd | enableMediaReceiverCmd

| disableMediaInitiatorCmd |

disableMediaReceiverCmd | sendMediaCmd |

sendFormCmd | declineConnectionCmd |

requestFormCmd | requestMediaCmd |

sendNegTokenCmd | requestNegTokenCmd

3. createConnectionCmd ::= createConnection

connectionIDA

4. closeConnectionCmd ::= closeConnection

connectionIDA

5. addParticipantCmd ::= addParticipant

connectionIDA personIDA {personIDA}

6. removeParticipantCmd ::= removeParticipant

connectionIDA personIDA {personIDA }

7. sendSchemaCmd ::= sendSchema connectionIDA

sender-personIDA receiver-personIDA

{receiver-personIDA} schemaA

8. enableMediaInitiatorCmd ::= enableInitiatorMedia

connectionIDA mediaNameA

9. enableMediaReceiverCmd ::=

enableReceiverMedia connectionIDA mediaNameA

10. disableMediaInitiatorCmd ::= disableInitiatorMedia

connectionIDA mediaNameA

11. disableMediaReceiverCmd ::=

disableReceiverMedia connectionIDA mediaNameA

12. sendMediaCmd ::= sendMedia connectionIDA

mediaNameA mediumURLA

13. sendFormCmd ::= sendForm connectionIDA

formIDA mediumURLA {mediumURLA } actionA

14. declineConnectionCmd ::= declineConnection

sender-personIDA receiver-personIDA

{receiver-personIDA}

15. requestFormCmd ::= requestForm connectionIDA

formIDA mediumURLA {mediumURLA } requestActionA

16. requestMediaCmd ::= requestMedia

connectionIDA mediaNameA requestActionA

17. sendNegTokenCmd ::= sendNegToken personIDA

18. requestNegTokenCmd ::= requestNegToken

connectionIDA

Figure 8. EBNF-like grammar for the control script.

communication control script. The transition relation (RSyn) is defined as follows:

((CIin, DIin), Envi) =⇒ ((CIout, DIout), (ScriptNeg, ScriptMT), Envi+1) (1)

where:

• (CIin, DIin) - input control and data instance pair to be processed (see left side of Figure
6(b)).

• Envi - current environment including the complete user’s view of the communication
schema instance currently being executed (userSchema) and a connection environment
(Conn Envi) for each of the connection processes currently being executed. The state of
each connection, Conn Envi, is defined as a two-tuple (Negi,MTi), where:

– Negi - current environment of a specific connection process with respect to
(re)negotiation and it includes the control instance (CIi) currently being negotiated or
executed (CIi ∈ {CINeg, CIexe}), negotiation state (Neg State), number of received
responses (num responses) and the presence of a negotiation token (hasNegToken).
Neg State is maintained in the Negotiation state machine discussed in Section 5.4.

– MTi - current environment of a specific connection process with respect to media
transfer and it includes the currently executing DI (DIexe), media transfer state
(MT State), and list of streams (num streams). MT State is maintained in the
Media Transfer state machine discussed in Section 5.5.

• (CIout, DIout) - output instance pair generated during the transition process. This pair
contains the CI and DI that may be sent to the UCI representing the currently executing
connection process. The UCI updates the user’s view of the communication using this instance
pair.

• (ScriptNeg, ScriptMT) - control script pairs generated for the UCM to invoke the execution
of the negotiation and media transfer macros. Note that these scripts may contain control
instances and data instances for the remote participants in the communication. (see the
rightmost column of Figure 7).

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

16 Y. WU ET AL.

• Envi+1 - updated environment after the most recent transition. The structure is similar to
Envi stated above.

The behavior model associated with a connection is based on a sequence of instance pairs of
the form (CIi, DIi), where i = 0, 1 · · ·n, CI is a control instance and DI a data instance. The
initial instance pair (CI0, DI0) represents the initial state of the system with respect to some new
connection to be established. Then the incoming CI1 is compared to CI0 resulting in changes to the
system state and the negotiation process initiated. The future behavior of the system is determined
based on subsequent incoming instance pairs and the current state of the system.

The input instance pair (CIin, DIin) may contain the user’s specifications for multiple
connections. Each instance pair is broken down into a set of instances per connection and handled
separately. For each connection, we break down the transition relation RSyn, defined in equation (1),
into a relation for handling control instances during negotiation, and one for handling data instances
during media transfer. The following relations are defined per connection j:

(CIin, Envi.Connj .Negk) =⇒ (CIout, ScriptNeg, Envi+1.Connj .Negk+1) (2)

(DIin, Envi.Connj .MTk) =⇒ (DIout, ScriptMT , Envi+1.Connj .MTk+1) (3)

RNeg, shown in equation (2), represents the relation transforming the control instance during
negotiation, and RMT , equation (3), the relation for transforming the data instance during media
transfer. A key part in our semantic definition is the changes identified between two successive
models, therefore we define the functions analyzeCS and analyzeDS that identify the changes in the
control schema instances and data schema instances, respectively. These changes are used to trigger
events in the labeled transition systems for negotiation and media transfer. To specify the transition
relations, RNeg and RMT in more detail, we define the following functions :

analyzeCI : ControlSchema× EnvNeg → ControlChangeType (4)

analyzeDI : DataSchema× EnvMT → DataChangeType (5)

updateNeg : ControlSchema× EnvNeg × ControlChangeType→
ControlSchema× EnvNeg ×NegScript

(6)

updateMT : DataSchema× EnvMT ×DataChangeType→
DataSchema× EnvMT ×MediaScript

(7)

where:

• ControlSchema is the type for control instances, CI (CIin or CIout), or the CI stored in the
environment(Negi.CINeg)

• DataSchema is the type for data instances, DI (DIin or DIout) or DI stored in the
environment(MTi.DIexec)

• ControlChangeType and DataChangeType are the enumerated types for changes related
to the input CI or DI , respectively

• EnvNeg and EnvMT are the types for the negotiation environment (Negi) and media
transfer state (MTi), respectively in Conn Envj

• NegScript and MediaScript are the types for the control scripts generated for negotiation
(ScriptNeg) and media transfer (ScriptMT), respectively

The transition relation RNeg can be defined by analyzeCI in equation (4) and updateNeg in equation
(6) as follows:

RNeg = updateNeg(CIin, Envi.Connj .Negk, analyzeCI(CIin, Envi.Connj .Negk)) (8)

Similarly, we specify the translation relation RMT as follows, using analyzeDI in equation (5) and
updateMT in equation (7) :

RMT = updateMT (DIin, Envi.Connj .MTk, analyzeDI(DIin, Envi.Connj .MTk)) (9)

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 17

Algorithm 1 Algorithm of SE Controller for Synthesizing CML models.
1: synthesisCML (ref (CIin, DIin))
2: connSchemas← decomposer.split((CIin, DIin))
3: /*connSchemas contains a list of (CIj ,DIj), each

being an input instance pair for jth connection */
4: if (CIin, DIin) is from UCI then
5: new conn← getNewConn(Envi.userSchema, connSchemas)
6: /* getNewConn returns the set of connections to be created */
7: if not (new conn == null) then
8: for each conn ∈ new conn do
9: conn proc← ConnProc.create(conn)

10: addConnProc(Envi, conn proc)
11: conn proc.start()
12: end for
13: end if
14: end if
15: for each (CIj , DIj) ∈ ConnSchemas do
16: conn proc← locateConnProc (j)
17: exec CML CI(conn proc, CIj)
18: exec CML DI(conn proc, DIj)
19: end for
20: old conn← getOldConn(Envi.userSchema, connSchemas)
21: /* GetOldConn returns the set of connections to be torn down */
22: if not (old conn == null) then
23: for each conn in old conn do
24: conn proc← locateConnProc(j)
25: exec CML CI(conn proc,null)
26: exec CML DI(conn proc,null)
27: /* clean up the state machines before tearing down the process */
28: conn proc.terminate()
29: end for
30: end if

31: exec CML CI(ref conn proc, ref CI)
32: CCI← analyzer.analyzeCI(CI, conn proc.Conn Envi, source)
33: /* Extract the difference in control instance and pass it

to the Negotiation machine in the connection process */
34: conn proc.Nego.stepNego(CCI)

35: exec CML DI(ref conn proc, ref DI)
36: /* Assume a data schema carries one piece of media to be transferred */
37: CDI← analyzer.analyzeDI(DI, conn proc.Envi,source)
38: conn proc.MT.stepMT(CDI)

The specifics of these functions will be explained further in subsequent sections in terms of
synthesis algorithms and state machines. To relate to the execution flow shown in Figure 6(b), the
Envi is maintained in the SE Controller, while the negotiation and media transfer states are
maintained by the negotiation and media transfer processes, respectively.

5.3. Synthesis Algorithms

In this subsection, we present synthesis algorithms that provide the basis for dynamically
synthesizing CML instances. Based on the execution architecture presented in Figure 6, the
algorithms for the SE Controller and Schema Analyzer processes are described. Detailed
behavioral logic for controlling the process of negotiation and media transfer are modeled as
concurrent state machines in the connection process. Definitions of these machines will be
introduced in Section 5.4 and 5.5, respectively.

CML models are received as input by SE Controller in the form of a (CI,DI) instance pair,
the synthesisCML method of the SE Controller object is invoked to process the incoming
instance pair. As shown in Algorithm 1, the synthesisCML algorithm starts by invoking an
internal split method, line 2, which splits the input (CI,DI) into a list of connection schemas
each in the form of (CIj , DIj) (0 ≤ j ≤ n, n being the number of connections in the model). Recall

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

18 Y. WU ET AL.

Algorithm 2 Algorithm to analyze CI.
1: analyze CI (ref CIi+1, ref Conn Envi, sourceCI)

/*Input: CIi+1 - schema from the UCI or UCM
Conn Envi - current environment object for a specific connection
sourceCI - source of CIi+1, UCI or UCM

Output: cci, an object with CI changes and an event trigger */
2: cci← compare(CIi+1, Conn Envi.CIi)
3: if sourceCI == UCI then
4: if cci.enum ∈ {initialCI} then
5: cci.addEvent(initiateNeg)

/* SE Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the initiateNeg to the negotiation SM */

6: else if cci.enum ∈ {partyRemoved} then
7: cci.addEvent(removeSelf)
8: else if cci.enum ∈ {selfRemoved} then
9: cci.addEvent(removeParty)

10: else if not cci.enum ∈ {no Change}} then
11: cci.addEvent(initiateReNeg)
12: end if
13: else if sourceCI == UCM && self.isInitiator then
14: if cci.enum ∈ {partyRemoved} then
15: cci.addEvent(removeParty)
16: else if cci.enum ∈ {no Change} then
17: cci.addEvent(localSameCI)
18: else
19: cci.addEvent(localChangeCI)
20: end if
21: else
22: /*sourceCI == UCM && !self.isInitiator */
23: if Conn Envi.CIi == null then
24: cci.addEvent(inviteNeg)

/* CI Controller uses this event to start the state
machines (SMs) for negotiation and media transfer
and passes the inviteNeg to the negotiation SM */

25: else if cci.enum ∈ {partyRemoved} then
26: cci.addEvent(removeParty)
27: else if cci.enum ∈ {no Change} then
28: cci.addEvent(remoteSameCI)
29: else
30: cci.addEvent(remoteChangeCI)
31: end if
32: end if
33: return cci

that a CML model could contain multiple connections. For each new connection we create a new
connection process (containing the concurrent negotiation and media transfer state machines) and
add it to the pool of connection processes, line 7 to 13.

Next we iterate through the set of instance pairs (CIj , DIj), and for each pair, the appropriate
connection process is located by invoking an internal locateConnProc method (lines 16). The
exec CML CI method, line 17, is invoked to analyze the control instance (CI) for this connection
identifying the changes to the CI, and trigger an execution step in the corresponding negotiation
state machine. A similar approach is used for the data instance by invoking exec CML DI on line
18.

Connections that are to be removed, lines 20 to 30, are selected by comparing the current
schema instance in the environment and the input list of connection instances. For each of these
old connections, its negotiation and media transfer state machines are terminated by passing them a
null schema before the connection process is terminated.

The schema analysis process is invoked by the SE Controller after receiving a schema from the
UCI or a schema event from the UCM, see Figure 6(b). The algorithm for analyzing a schema
instance is composed of two algorithms: (1) analyze CI for analyzing control schema instances,
shown in Algorithm 2, and (2) analyze DI for analyzing data schema instances, shown in
Algorithm 3. The input parameters to both algorithms include a connection instance from the SE

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 19

Algorithm 3 Algorithm to analyze DI.
1: analyze DI (ref DIi+1, ref Conn Envi, sourceDI)

/*Input: DIi+1 - schema from the UCI or UCM
Conn Envi - current environment object
sourceDI - source of DIi+1 is either UCI or UCM

Output: - cdi, an object with DI changes and an event trigger */
2: cdi← compare(DIi+1, Conn Envi.DIi)
3: if sourceDI == UCI then
4: if cdi.enum ∈ {streamAdded} then
5: cdi.addEvent(enableStream)
6: else if cdi.enum ∈ {streamRemoved} then
7: cdi.addEvent(disableStream)
8: else if cdi.enum ∈ {nonStreamAdded} then
9: cdi.addEvent(sendNonStream)

10: else if cdi.enum ∈ {formAdded} then
11: cdi.addEvent(sendForm)
12: end if
13: else
14: /*sourceDI == UCM*/
15: if cdi.enum ∈ {streamAdded} then
16: cdi.addEvent(enableStreamRec)
17: else if cdi.enum ∈ {streamRemoved} then
18: cdi.addEvent(disableStreamRec)
19: else if cdi.enum ∈ {nonStreamAdded} then
20: cdi.addEvent(recNonStream)
21: else if cdi.enum ∈ {receiveForm} then
22: cdi.addEvent(recForm)
23: end if
24: end if
25: return cdi

Controller (CIi+1 or DIi+1, for connection j), a reference to the current connection environment of
the SE (Conn Envi), and the source of the schema to be analyzed (UCI or UCM). Each algorithm
returns an object that contains the specific changes between the new connection instance and the
current instance in Conn Envi, including the event that triggers the transitions in the state machines
for (re)negotiation and media transfer. Algorithms analyze CI and analyze DI correspond to
equations (4) and (5), respectively.

The compare function, line 2, in both algorithms computes the change between the new
connection instance (CIi+1 or DIi+1) and current one in Conn Envi, and stores them in the object
cci, for control instance changes, or cdi, for data instance changes. The fields in this object
include an enumeration that specifies the category of change, e.g., initialCI as shown on line
4 in Algorithm 2, among other information used during the execution of the state machines such as
values for evaluating guards and information needed to generate control scripts. The SE Controller
uses the contents of the cci or cdi object to trigger appropriate transition(s) in corresponding state
machines for the execution of specific communication services.

The running time of synthesisCML shown in Algorithm 1 is dependent on the maximum
number of connections in both the incoming control instance (CIin) and the control instance
stored in the environment (Envi), and the product of the number of nodes in the two control
instances analyzed in Algorithm 2. Each of the control instances, CIi+1 and CIi, in algorithm
analyze CI has only one connection. We deduce that the worst case running time for the
algorithm synthesisCML is O(m2 + (m ∗ n2)) where m is the maximum number of connections
in either CIin or the control instance in Envi, and n if the maximum number of nodes in either CIi+1

or CIi. Since m� n for most communication instances then the worst case running time will be
closer to O(n2).

5.4. Negotiation

The behavioral logic for controlling the negotiation of communication services is captured in the
negotiation state machine in our semantic specification, see Equations (6) and (8) in Section
5.2. The separation of negotiation logic from the schema analysis ensures the extensibility of the

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

20 Y. WU ET AL.

Table I. State machine for schema (re)negotiation.

T. Source State Target State Event Guard Action
0 Initial NegReady
1 NegReady NegInitiated initiateNeg hasNegToken addNegBlock(CIneg)

genConnection Script
2 NegReady NegInitiated initiateReNeg hasNegToken addNegBlock(CIneg)
3 NegInitiated WaitingSameCI # remoteParty != 0 genSendCS Script
4 WaitingSameCI WaitingSameCI localSameCI # responses < #

remoteParty
5 WaitingSameCI NegComplete localSameCI # responses == genSendCS Script

remoteParty
6 NegComplete NegReady CIexe ← CIneg

UCI.notify(CIexe)
7 WaitingSameCI WaitingAnyCI localChangeCI # responses < #

remoteParty
update(CIneg)

8 WaitingSameCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

9 WaitingAnyCI WaitingAnyCI localSameCI # responses < #
remoteParty

10 WaitingAnyCI WaitingAnyCI localChangeCI # responses < #
remoteParty

update(CIneg)

11 WaitingAnyCI NegComplete localSameCI # responses == #
remoteParty

genSendCS Script

12 WaitingAnyCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

13 WaitingSameCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
14 WaitingAnyCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
15 WaitingSameCI NegTerminateInit after t sec. # remoteParty == 1
16 WaitingAnyCI NegTerminateInit after t sec. # remoteParty == 1
17 NegReady NegRequested inviteNeg notifyUCI InviteNeg
18 NegRequested NegTermRemote UCI.rejectInvite genRejectInvite Script
19 NegTermInit Final UCI.notify(CIexec)

genCloseConnect Script
20 NegTermRemote Final
21 NegRequested WaitingConfirm UCI.acceptInvite genConnection Script

genSendCS Script
22 WaitingConfirm NegComplete remoteSameCI
23 WaitingConfirm WaitingConfirm remoteChangeCI update(CIneg)

genSendCS Script
24 WaitingConfirm NegTermRemote after t sec. UCI.notify(CIexe)

genCloseConnect Script
25 NegReady SelfRemoved removeSelf hasNegToken genRemoveSelf Script
26 NegReady NegReady removeParty # remoteParty > 1 update(CIneg)

CIexe ← CIneg

genRemoveParty Script
27 NegReady Final removeParty # remoteParty == 1 genCloseConnect Script

UCI.notify(CIexe)
28 SelfRemoved Final

negotiation logic in future iterations of the semantic specification. As shown in Figure 6(b), the input
to the negotiation state machine is a control instance change object (output of analyze CI
method). The output of the state machine consists of a generated control script for negotiation,
control instances to be sent to UCI, and relevant action requests for updating the SE environment.
Note that not all components of the output need to have values for a particular transition rule.

Table V shows the state machine for negotiation and renegotiation. The table contains six
columns, the columns from left to right are: the transition number, the source and target states,
the event to trigger the transition, the guard to be satisfied before the transition can be triggered
and the action to be taken after the transition has been triggered. Since some actions will change
the environment of the SE, the SE Dispatcher will direct them back to the SE Controller,
such as update(CIneg)(See Figure 6(b)).

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 21

An example of a transition in the state machine is Transition 1, Row 2 of Table V, from the source
state NegReady to the target state NegInitiated, which is triggered by the initiateNeg
event, assuming that the environment has the negotiating token (hasNegToken is true). As a result
of the transition a negotiation block is added to the new control instance, addNegBlock(CIneg),
and a script to create the connection is generated, genConnection Script. In Table V we use
the following notation for guards and actions:

• hasNegToken - negotiating token that must be obtained before starting a negotiation.
• # remoteParty - number of remote participants in the negotiation.
• # responses - number of responses from the remote participants
• addNegBlock(CIneg) - block in the schema that keeps data associated with the negotiation

process, e.g., sender’s id, negotiation initiator’s id. This is an action request delegated to the
SE Controller.

• genXXX Script - generates the XXX control script. Recall a control script may contain
one or more script commands.

• update(CIneg) - updates the schema being negotiated based on changes such as, removal
of a participant or removing self from the schema. This is an action request delegated to the
SE Controller.

• UCI.notify(CIout) - send the output CI to the UCI to inform the user of the result of the
negotiation.

During negotiation the state machine waits for responses from remote participants. All remote
participants replying with the same control instance leads to NegComplete state and a control
script is generated to inform all remote participants that negotiation is complete. Any CI received
from a remote participant that is different from the one that was sent will result in a transition
to the WaitingAnyCI state and the CIneg is updated to include this change. If all the CIs
received from the remote participants are the same as the one sent, then the system transitions
to the NegComplete state followed by the NegReady state and awaits another negotiation
cycle. A successful negotiation always leads to NegComplete state and replace the executing
schema CIexe in the userSchema with CIneg. No response received in t seconds from any remote
participants implies a timeout and either results in the removal of the specific participant from the
schema or a negotiation failure.

5.5. Media Transfer

In a similar manner to negotiation, the media transfer state machine, shown in Table
VI, is constructed to separate the media transfer logic from the specifics of the schema analysis
process. Similar to negotiation, the input to the media transfer state machine is a data
instance change object (output of analyze DI method). The output of the state machine includes
a generated control script for media transfer, data instances to be sent up to UCI, and relevant
action requests for updating the SE environment. Similar to the output of the negotiation
state machine, not all components need to have values for a particular transition rule. The semantic
specification for media transfer is defined in Equations (7) and (9) in Section 5.2.

Although we do not show it in Table VI the executing DI is updated for Transitions 1 through 17,
i.e., the entry DSexec ← DSin should be in the Action column. We use a similar notation for the
guards and actions as shown below:

• IsStreamEnabled - is a boolean that represents if a particular live stream m (such as audio,
video, audio-video) specified in DSexe is enabled, see the predefined types for CML in [8].
We leave out the parameter m to simplify the notation in the table.

• # streams - represent the number of active live streams.
• UCI.notify(DIout) - send the data schema to the UCI to inform the user that a new media

is enabled or received from a remote participant.

The change object cdi returned from the analyze DI contains the information required
by the state machine to trigger transitions and perform actions. For example, Transition

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

22 Y. WU ET AL.

Table II. State machine for media transfer.

Tr. Source State Target State Event Guard Action
0 Initial Ready initiateNeg ‖ inti-

ateInviteNeg
1 Ready StreamEnabled enableStream genStreamEnable Script
2 Ready StreamEnabled enableStreamRec genStreamEnableRec Script

UCI.notify(DSi+1)
3 StreamEnabled StreamEnabled enableStream !IsStreamEnabled genStreamEnable Script
4 StreamEnabled StreamEnabled disableStream IsStreamEnabled

&& # streams > 1
genStreamDisable Script

5 StreamEnabled StreamEnabled enableStreamRec !IsStreamEnabled genStreamEnableRec Script
UCI.notify(DSout)

6 StreamEnabled StreamEnabled disableStreamRec IsStreamEnabled
&&

genStreamDisableRec Script

streams > 1 UCI.notify(DSout)
7 StreamEnabled StreamEnabled sendNonStream genNonStreamSend Script
8 StreamEnabled StreamEnabled sendForm genSendForm Script
9 StreamEnabled StreamEnabled recNonStream UCI.notify(DSout)
10 StreamEnabled StreamEnabled recForm UCI.notify(DSout)
11 StreamEnabled Ready disableStream # streams == 1 genCloseStream Script
12 StreamEnabled Ready disableStreamRec # streams == 1 genCloseStreamRec Script

UCI.notify(DSout)
13 Ready Ready sendNonStream genNonStreamSend Script
14 Ready Ready sendForm genSendForm Script
15 Ready Ready recNonStream UCI.notify(DSout)
16 Ready Ready recForm UCI.notify(DSout)
17 Ready Final terminate

1, Row 2 in Table VI, represents the transition from source state Ready to target state
StreamEnabled. This transition does not have a guard and the resulting script generated,
genStreamEnabled Script, enables the stream on the sender’s side of the communication
channel.

5.6. Validation of Dynamic Synthesis using Kermeta

We simulated the semantics of CML models for dynamic synthesis as a form of validation after
developing the semantics. To perform the simulation, a meta-modeling tooling facility was needed
that could facilitate the definition of the syntax and semantics of CML. In addition, the tool should
allow for the definition of executable models. As a result of investigating several meta-modeling-
based simulation tools, we decide to use Kermeta [39]. Kermeta is a powerful meta-programming
environment for engineering domain-specific languages like CML, with strong tooling support. It
allows the description of meta-models whose models are directly executable, and also it is easy to
use due to the extensive documentation available online and accessibility of the developers.
Simulation approach: In our simulation, we first specified the CML meta-model using ECORE
(Figure 4). To specify the behavioral semantics of CML, we first modeled the synthesis engine
(SE) and used the generation tool, Ecore2Kermeta, in the workbench to translate the SE model
to a Kermeta compatible version. We then coded the semantic specification defined previously as
operations within the SE model. Figure 9 shows the class NegController (part of the SE model) for
our implementation of the semantics using Kermeta. The operation stepNego, line 5, shows part of
the logic for the negotiation state machine.

In order to simulate the dynamic synthesis of CML models we created a harness which included
stubs and drivers. The stubs included a pretty printer that generated control scripts as output and
updated the system environment. A test driver was also created, which initiated a SE controller
object, loaded a CML model instance and passed it to the SE controller (See Figure 6(b)). To
simulate the negotiation of CML models between multiple parties, a series of CML instances were
fed into the driver during runtime to simulate the reply from each remote participant. The output of
the simulation program was the control script to be deployed in UCM, and the updated environment
of the synthesis engine.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 23

1 aspect class NegController {
2 reference negotiation : Negotiation;
3 reference schemaAnalysis : SchemaAnalyzer;
4 reference scriptGen : ScriptGenerator;
5 operation stepNego(changeCS: SchemaChangeObj): NegotiationEvent is do {
6 var event: NegotiationEvent;
7 if(changeCS.getEvent() == "initiateNegEvent" and
8 negotiation.currentState == negoState.NegReady)
9 negotiation.startNeg Init()

10 scriptGen.genConnectionSendCS Script(negotiation, changeCS)
11 end

12 if(changeCS.getEvent() == "acceptInvite" and
13 negotiation.currentState == negoState.NegRequested)
14 negotiation.startNeg Rev()
15 scriptGen.genConnectionSendCS Script(negotiation, changeCS)
16 end

17 if(changeCS.getEvent() == "removeSelfEvent" and
18 negotiation.currentState == negoState.NegReady)
19 negotiation.removeSelf()
20 scriptGen.genRemoveSelf Script(negotiation)
21 end
22 /* Remaining code left out due to space limitation */
23 end}

Figure 9. An excerpt of Kermeta Code For NegController class

Limitations of Simulation: The main limitation of the simulation relates to the lack of simulating
concurrent processes in Kermeta. Due to Kermeta’s indirect support for concurrent operations, we
had to use interleaving semantics to model concurrency for the (re)negotiation and media transfer
processes (See Figure 6(b)), as well as inter-process concurrency. Interleaving semantics proved
enough for the purpose of simulating CML models.

6. CVM PROTOTYPE

The CVM prototype consists of four major subsystems and a utility package as shown in Figure
10. These subsystems are the four components previously described in Section 3.3. A more in-
depth conceptual description of these components are presented by Deng et al. [8]. Unlike previous
CVM prototypes described in the literature, this prototype is the first one to follow the four layered
architecture and contain a graphical modeling environment. In this section we focus our description
on the user communication interface (UCI) and the synthesis engine (SE). A summary of the
components used in the prototype is given below:

uci se ucm ncb

utils

Figure 10. Top level architecture of the CVM prototype.

cvm::uci - the User Communication Interface (UCI) subsystem provides users will the ability to
create, load, save and validate CML models. The UCI also passes CML models to SE for realization.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

24 Y. WU ET AL.

conn::MediaTransferOjbect

conn::ConnectionProcess

«singleton»
conn::ConnectionProcessManager

conn::MediaTransferThread

conn::NegotiationObject

«singleton»
manager::SE_Facade

«singleton»
manager::SE_Managerhandlers

1

*

conn::NegotiationThread

1
1

1
1

1
1

1

1
«singleton»

script::ScriptCreatorManager

«singleton»
manager::UCM_Facade

uci::manager

ucm::manager

utils::handlers::schema

Figure 11. Class diagram for the synthesis engine.

Validation ensures that the models have appropriate values for all the required fields making
them communication instances, for example each participant needs to have a valid user id. The
main components of the UCI are (1) Communications Modeling Environment (CME), a graphical
model environment, that provides expert users with the facility to create G-CML domain-specific
communication models, mainly control schemas; (2) User Interface (UI), a user-friendly interface,
that provides casual users with the facility to create communication models, both control and data
instances, and (3) Schema Transformation Environment (STE) converts and validates models created
in CME and UI into X-CML model instances before being passed onto SE. Figure 15 in Appendix A
shows a diagram of the model created for the scenario described in Section 2. Figure 16 in Appendix
B shows the UI representation of the model for the control instance and two data instances. The X-
CML representation of the control instance and two successive data instances is not shown due to
space limitations.
cvm::se - the functionality of SE is described in details in Section 5 and will not be revisited
in its entirety at this point. Figure 11 shows a class diagram containing the main classes
and packages used by SE. SE interfaces with UCI and UCM via the classes SE Facade
and UCM Facade, respectively. The SE Manager coordinates the activities of SE and the
ConnectionProcessManager keeps track of the ConnectionProcess objects created per
connection. The basic functionality of the SE Manager (same as SE Controller in Figure 6(b))
is described in Algorithm 1. The ConnectionProcess class coordinates the activities associated
with each connection which includes the (re)negotiation and media transfer processes, shown in
Figure 6. The classes NegotiationObject and MediaTransferObject define the state machines
shown in the Tables V and VI, respectively. Schema analysis is performed in the utility package
utils::handlers::schema. This functionality, described in algorithms analyze CI (Algorithm 2)
and analyze DI (Algorithm 3) is, placed in the utils package since the UCI also needs to track
changes to the control and data instances when updating the UI after receiving updated instances
from SE.
cvm::ucm - UCM is designed to support the execution of communication control scripts, including
system initialization, macro loading and interpretation, and exception and event handling and
runtime media management. UCM handles events from the network communication broker (NCB)
as well as internal events. Macros are loaded dynamically by the UCM manager which then
delegates the the execution of the macros to the script interpreter. The runtime media management
supports temporary storage of non-stream media, handling local user media request, and performing
the actions associated with different form types. Wu et al. [29] describe the UCM subsystem used

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 25

Table III. Static metrics for the CVM prototype.

Metrics utils uci se ucm ncb Totals
SLOC 1,949 5,108 963 737 1,659 10,416
packages 5 6 6 5 7 29
classes 48 192 22 28 59 349
methods 407 746 156 131 333 1,773

in the current version of the prototype, providing additional details on how the functionality is
implemented.
cvm::ncb - NCB exposes an API to the UCM that allows it to interact with the underlying
communication frameworks/applications. The current version of the prototype interacts with Skype
[14] through Java API Skype4Java [40]. NCB is developed using an autonomic architecture that
will support other communication frameworks/applications and self-* capabilities. The prototype
uses a bridge, NCBBridge, that interacts the Skype adapter, SkypeAdapter. Other adapters
under development include Smack [41], JMML [42], and SIP Communicator [43]. The NCB
is coordinated by the NCBManager that interacts with the communication services manager
CommServicesManger that coordinates the activities of the various adapters that implement the
NCBBridge. Allen et al. [31] provide additional details on the implementation of the NCB.
cvm::utils - this package provides support for the operations in other packages. The classes
contained in cvm::util are used to analyze a schema since this functionality is required for both
the UCI and SE. Schema analysis in the UCI is required when changes are made to the schema in
SE and it is then sent to the UCI to be displayed in the UI. Section 5.3 describes the use of the
schema analysis in SE. There is also an abstract class defined for event handlers that is used by all
the layers in the CVM.

Table VII shows some of the static metrics for the individual layers of the CVM. The first column
contains the names of metrics, columns two through six contain the values of the metrics for the
packages cvm::utils, cvm::uci, cvm::se, cvm::ucm and cvm::ncb, respectively. The last column
on the left of the table contains the totals for the entire CVM. For example, the first row represents
the single lines of code (SLOC), where package cvm::utils has 1,949 lines of code and the CVM
has 10,416 lines of code. The metrics were obtained using Dependency Finder [44].

7. EVALUATION

To evaluate the effectiveness of realizing CML models using dynamic synthesis we performed a
series of experiments using the CVM prototype. The results of the experiments provided us with an
estimate of the overhead required to dynamically synthesize CML models during negotiation and
media transfer.

7.1. Experiment Setup

Design of Experiments: We deployed CVM on seven machines (desktops and laptops), and on
both wired and wireless local area networks. Seven demonstration user accounts were created for
the seven end-users required for the communication scenarios. These user accounts, “cvmtester1”
to “cvmtester7”, were created in both the CVM and Skype [14]. To evaluate the time required
for the overall realization of the communication service and the overhead of synthesizing the
communication models, we performed two sets of experiments:

• Experiment Set 1: Measure the execution time overhead for dynamic synthesis in the overall
realization process for a set of scenarios, and

• Experiment Set 2: Measure the execution time for the major components of the SE for the
same set of scenarios.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

26 Y. WU ET AL.

Table IV. Average Time for Realizing N-way Audio Conferencing.

Synthesis Realization Execution Synthesis
N (SE Driver, UCM Stub) (SE Driver) (UCM Driver) Overhead

(sec) (sec) (sec) (%)

2 1.1718 8.9921 7.4123 15.24
3 1.8004 23.7443 21.2950 11.27
4 2.0645 24.3403 22.1056 7.94
5 2.4239 26.9299 23.8750 10.52
6 2.7581 34.4373 32.4534 6.46
7 3.1679 45.3998 43.4514 5.24

Since the focus of the experiments is on the execution of communication services, as opposed
to the modeling and specification of them, we bypassed the User Communication Interface (UCI)
layer of the CVM architecture by developing and executing test drivers for the SE and and UCM.
For Experiment Set 1, we created test drivers for SE, that actually invoked SE and the lower layers of
CVM and connected to the remote CVMs. Drivers were also created for the UCM that invoked the
NCB and connected to the remote CVMs. For Experiment Set 2, we isolated the synthesis engine
by creating test drivers for SE and corresponding stubs for the UCM. To obtain inputs for the test
drivers, we ran the scenarios from the user interface and retrieved the X-CML from the log files.
The X-CML was used by the test driver and provided as input to SE in order to initiate the specific
scenario. The stubs for the UCM were created with low-level events to simulate the response from
remote CVMs during the negotiation phase. These events contained the received X-CML schema
instances from the remote CVMs during the negotiation.

Choice of Scenarios: The set of communication scenarios that we carried out includes: N-way audio
conferencing (where N = 2 to 7), video conferencing (currently limited to 2-way due to restrictions
of the Skype framework), text messaging, file transfer and form transfer. We also chose scenarios
for dynamic re-negotiation, where one participant initiates modifications to the schema instance and
results in a consistent updated schema at various end-points. Specifically we report on the results of
an N-way audio conference dynamically synthesized to an (N+1)-way conference, where N = 2 to
6.

Data Collection: For each of the above scenarios, we performed the two sets of experiments
mentioned earlier. In the Experiment Set 1, we evaluated the overhead of realizing CML models
by measuring the elapsed time from the initiation of the scenario to the time audio starts streaming
on actual networks, including schema negotiation and media transfer. For Experiment Set 2 we
measured the elapsed execution time of a stand alone SE for dynamic synthesis (using stubs for
lower lays of CVM without incurring actual communication delivery). We also instrumented our
prototype with Eclipse Testing & Performance Tooling Platform (TPTP) [45] for detailed execution
time analysis. The execution time analysis from TPTP provided us with data on how major SE
components of the prototype implementation are affecting the overall performance of the dynamic
synthesis process. For each experiment in the set we executed the scenario ten times, discarded the
highest and lowest values and took the average of the remaining values.

7.2. Results

The results of the experiments are shown in Table VIII, Figure 12 and Figure 13. Table VIII shows
the average execution time, in seconds, for N-way audio conferencing. The columns from left to
right are the value of N, number of participants in the conference; time for dynamic synthesis using
a standalone SE, i.e., using SE driver and UCM stub; time for realization using a SE driver and
remote CVMs; time for execution (realization minus dynamic synthesis) using a UCM driver and
remote CVMs; and the overhead of dynamic synthesis as a percentage. The overhead of the dynamic
synthesis is computed as a percentage of the ratio of time for synthesis over the time for realization.
Recall that overall realization time is measured from the point when the X-CML, for the scenario, is

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 27

35

40

45

50

E
x

e
cu

ti
o

n
 T

Im
e

 (
in

 s
e

co
n

d
s)

Synthesis Realization Execution

5

10

15

20

25

30

E
x

e
cu

ti
o

n
 T

Im
e

 (
in

 s
e

co
n

d
s)

0

5

2 3 4 5 6 7
Number of participants

(a)

12%

14%

16%

18%

S
y

n
th

e
si

s
O

v
e

rh
e

a
d

 (
P

e
rc

e
n

ta
g

e
)

2%

4%

6%

8%

10%

12%

S
y

n
th

e
si

s
O

v
e

rh
e

a
d

 (
P

e
rc

e
n

ta
g

e
)

0%

2%

2 3 4 5 6 7

Number of participants

(b)

Figure 12. (a)Average Time for Realizing/Synthesizing N-way Audio Conferencing. (b) Synthesis
Overhead(Percentage)

sent to the SE until the point when audio streaming starts. Realization therefore includes the schema
negotiation and medium transfer. Figure 12(a) is a graphical representation of the experimental
results in Table VIII, where the topmost graph represents the realization time, the middle graph
the execution time, and the graph closest to the x-axis the synthesis time. Figure 12(b) shows the
overhead for the synthesis process. The overhead for the synthesis process lies between 5% and
15% of the time for realizing the models. As the number of participants in the conference increases
the overhead drops except for the 5-way conference.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

28 Y. WU ET AL.

0%

10%

20%

30%

40%

50%

60%

2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

S
E

 C
o

m
p

o
n

e
n

ts

Number of participants

SE Management & Event Handling Schema Analysis Connection Process

(a)

200%

250%

R
e

n
e

g
o

ti
a

ti
o

n
 r

a
te

(
P

e
rc

e
n

ta
g

e
)

0%

50%

100%

150%

R
e

n
e

g
o

ti
a

ti
o

n
 r

a
te

(
P

e
rc

e
n

ta
g

e
)

0%

2-->3 3-->4 4-->5 5-->6 6-->7

Number of participants

(b)
Figure 13. (a) Percentage on each SE component (b)Renegotiation ratio for N-way to (N+1)-way

(Percentage)

Figure 13(a) shows the break-down of the execution time for the different components of the
synthesis engine. We see that the Connection Process component, the rightmost bar in each cluster,
and Schema Analysis component, the middle bar in each cluster, take up the majority of the execution
time. The execution time for the Connection Processes component increases as the number of
participants in the audio conference increase, starting at 43% for a 2-way audio conference to 46%
for a 7-way audio conference. The execution time for the Schema Analysis component decreases
slightly as the number of participants in the audio conference increase, starting at 54% for the 2-way
conference to 52% for the 7-way conference. The execution time for the SE Management and Event
Handling components decreases as the number of participants in the audio conference increases
going from 4% for a 2-way conference to less that 1% for the 7-way conference.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 29

Figure 13(b) shows the renegotiation ratio of converting an N-way audio conference to an (N+1)-
way audio conference. We define the renegotiation ratio to be the execution time of a renegotiation
process(in this case, converting an N-way audio conference to an (N+1)-audio conference) divided
by the time for initial negotiation (in this case an N-way audio conference). From the graph in Figure
13(b) we see that as N, the number of participants in the conference, increases the renegotiation
drops to under 100%. The highest value for renegotiation is converting from a 2-way to 3-way
conference taking twice as long (200%) as the initial 2-way negotiation. The renegotiation for the
N-way to the (N+1)-way conference for N = 3 to 6 are all less that the initial negotiaton, i.e. between
75% to 90%.

7.3. Discussion

The results of the experiments show that the overall realization time for schema negotiation and
media transfer is scalable with respect to the number of participants for N = 2 to 7. The realization
process itself is dominated by execution time of the UCM and NCB. It was not practical to perform
the experiments for greater than 7 participants in the audio conference due to lack of experimental
infrastructure. As can be seen from the graphs in Figure 12(a), dynamic synthesis appears to be
scalable as the number of participants in the conference increases, even for N > 7. We can conclude
that the overhead for dynamic synthesizing of CML models during schema negotiation and media
transfer is negligible in the overall execution cost of the CVM runtime (including SE, UCM and
NCB).

The breakdown of the execution time for the major processes in the SE during dynamic synthesis,
as shown in Figure 13(a), reveals that the Connection Process and Schema Analysis use over 95%
of the time during synthesis. The Connection Process is responsible for handling state changes in
schema negotiation and media transfer, and the Schema Analysis process handles the marshaling
and demarshaling of schemas and the parsing and population of X-CML (XML documents). The
SE Management and Event Handling only take up a small portion (less than 5%) of the total
execution time and is responsible for process management (establishing, maintaining and destroying
communication processes) and the event handling (receiving and notifying low level events). Using
Eclispe TPTP [45] we measured several other metrics not presented in Section 7.2, including the
number of threads. There was no change in the number of threads used in the SE. This was expected
since all the control instances used in the experiments only contained one connection, with a varying
number of participants.

Threats to validity: The threats to our experimentation can be classified under two major headings
1) threats to internal validity, and 2) threats to external validity. Threads to internal validity includes:
(1) the occurrence of unexpected network delays and events in actual communication channels; (2)
the response delay at various participant end-points, and (3) the instrumentation of the synthesis
engine using TPTP as a single measuring instrument appears not to be suitable for the experiments.
Using Eclipse TPTP to capture the metrics during execution of the SE resulted in the time for each
iteration for a scenario being much longer than anticipated. In addition, the machine on which the
experiments were performed had to be restarted several times during the experiments. To mitigate
the threats to internal validity, we repeated each scenario ten times, removed the maximum and
minimum values and computed the average of the reaming 8 values.

Threats to external validity include: the generalization of the chosen networks, demonstration
computers and specific communication frameworks that CVM uses e.g., Skype [14]. To avoid threats
to external validity, we chose different machines (both desktops and laptops), in a combination
of wired and wireless local area networks. However, the current prototype implementation relies
on Skype for actual delivery of communication services, which diminishes the generality of the
approach on multiple communication frameworks. Skype does not identify the machine it uses to
mix the audio in a conference call and this may have impacted the results for realization times. Part
of our future work is to integrate other frameworks such as Smack[41], Asterisk [46] and MSN
Messenger [42] into the NCB. We are also working on an approach for dynamic adaptation that
would move a conference call from Skype to Asterisk when the numbers of participants in a call
reaches a particular threshold. Asterisk is a software implementation of a telephone private branch

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

30 Y. WU ET AL.

exchange (PBX) that supports VoIP services. This adaptation would reduce the high execution time
required for conference calls with more than 7 participants as shown in Figure 12(a).

8. CONCLUDING REMARKS

We presented a model-driven approach for the on-demand specification, synthesis and delivery
of user-centric communications services. The approach is centered around the Communication
Modeling Language (CML), an interpreted domain specific modeling language for modeling
user-centric communication services. Communication models (communication schemas) developed
using CML are automatically realized using the CVM platform. We applied a systematic approach
to the engineering of CML, and discussed its meta-model (abstract syntax and static semantics),
behavioral specification and prototypical implementation. Note that CML does not require end-
users to be technology or modeling savvy. The user-friendly interface in CVM is suited to casual
users and allows pre-defined models to be loaded and realized. For most end-users (e.g., a doctor),
the graphical modeling aspect of CVM will be hidden, because the communication models they use
will be packaged as pre-defined services. These models will be created by their service providers or
domain experts in their organizations (e.g., a hospital).

We also presented an evaluation of our approach through a set of prototypical experiments. Initial
experimental results show that dynamic synthesis is an effective approach in that the overhead for
dynamic synthesizing of CML models during schema negotiation and media transfer is negligible.
Also the overall execution cost is scalable with respect to the number of participants, demonstrating
the practicality of our approach.

Several classes of issues including security, performance, and adaption rules are not addressed in
the current version of CML. We argue, however, that CML represents a new paradigm for structuring
and delivering communication solutions and services, which is more user-centered than the current
ways of service specification. The extensible nature of CML allow new features to be seamlessly
added as they become a primary concern e.g. the coordination of communication services using
workflow concepts.

9. ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under grants HRD-0833093,
OISE-0730065, CCF 1018711 and CNS 0854988. Students working on this project were supported
in part by a US Dept of Ed. grant P200A070543 and two Florida International University
Dissertation Year Fellowships - Yali Wu and Andrew Allen. The authors would like to thank Yingbo
Wang for her work on the initial version of CML and CVM. We would also like to thank Professor
Jean-Marc Jezequel and the Triskell Research Team at INRIA Rennes for hosting Yali Wu and
Andrew Allen during their visit in Summer 2009.

REFERENCES

1. Apple Inc.: Facetime for iphone 4 (2010) http://www.apple.com/iphone.
2. Apple Inc.: ipad (2010) http://www.apple.com/ipad/.
3. Google: Android developers (2010) http://developer.android.com.
4. Krebs, D.: The mobile software stack for voice, data, and converged handheld devices (2005) Mobile and Wireless

Practice Venture Development Corporation.
5. Group, T.P.: Parlay/osa specifications (2010) http://etsi.org/WebSite/Technologies/OSA.aspx.
6. Sun Microsystems and OpenCloud: Jain-slee (2008) http://www.jainslee.org/.
7. The JAIN-SIP Project: Java api for sip signaling (2010) https://jain-sip.dev.java.net/.
8. Deng, Y., Sadjadi, S.M., Clarke, P.J., Hristidis, V., Rangaswami, R., Wang, Y.: CVM - a communication virtual

machine. JSS 81 (2008) 1640–1662
9. Lasserre, P., Kan, D.: User-centric interactions beyond communications. Alcatel Telecommunications

Review (2005) http://www1.alcatel-lucent.com/doctypes/articlepaperlibrary/pdf/
ATR2005Q1/S0503-UCBB_interactions-EN.pdf (March 2007).

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.apple.com/iphone
http://www.apple.com/ipad/
http://developer.android.com
http://etsi.org/WebSite/Technologies/OSA.aspx
http://www.jainslee.org/
https://jain-sip.dev.java.net/
http://www1.alcatel-lucent.com/doctypes/articlepaperlibrary/pdf/ATR2005Q1/S0503-UCBB_interactions-EN.pdf
http://www1.alcatel-lucent.com/doctypes/articlepaperlibrary/pdf/ATR2005Q1/S0503-UCBB_interactions-EN.pdf

A DOMAIN-SPECIFIC MODELING APPROACH TO REALIZING USER-CENTRIC COMM. 31

10. Wu, Y., Hernandez, F., Ortega, F., Clarke, P.J., France, R.: Measuring the effort for creating and using domain-
specific models. In: Proceedings of 10th Domain Specific Modeling Workshop. (2010)

11. Clarke, P.J., Hristidis, V., Wang, Y., Prabakar, N., Deng, Y.: A declarative approach for specifying user-centric
communication. In: International Symposium on Collaborative Technologies and Systems, IEEE (2006) 89 – 98

12. Wang, Y., Wu, Y., Allen, A., Espinoza, B., Clarke, P.J., Deng, Y.: Towards the operational semantics of user-centric
communication models. In: COMPSAC 09, IEEE (2009) 254–262

13. Burke, R.P., White, J.A.: Internet rounds: A congenital heart surgeon’s web log. Seminars in Thoracic and
Cardiovascular Surgery 16 (2004) 283–292

14. Skype Limited: Skype (2010) http://www.skype.com/.
15. User Centric Communications New York, N.: User centric communications (2009)
16. Arbanowski, S., Meer, S.V.D., Steglich, S.: User-centric communications. In: Proceedings of the 8th IEEE

International Conference on Telecommunications (ICT 2001). (2001) 425–444
17. Dhara, K.K., Ross, T.I., Krishnaswamy, V.: A framework for developing user-centric services for communication

end-points. In: Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. (2009) 1 –6
18. IBM: The power of unifying communications and collaboration. Unified communications and collaboration White

paper (2009)
19. Yelmo, J.C., del Alamo, J.M., Trapero, R., Martin, Y.S.: A user-centric approach to service creation and delivery

over next generation networks. Computer Communications In Press, Corrected Proof (2010) –
20. Tarkoma, S., Bhushan, B., Kovacs, E., van Kranenburg, H., Postmann, E., Seidl, R., Zhdanova, A.V.: Spice: A

service platform for future mobile ims services. In: World of Wireless, Mobile and Multimedia Networks, 2007.
WoWMoM 2007. IEEE International Symposium on a. (2007) 1 –8

21. Shin, Y., Yu, C., Chung, S., Kim, S.: End-user driven service creation for converged service of telecom and internet.
Advanced International Conference on Telecommunications 0 (2008) 71–76

22. MORFEO open source community: Ezweb project (2010) http://ezweb.tid.es.
23. WF-CML Development Team: Workflow communication modeling language (2010)
24. group, T.M.T.: The moda-tel project (2004) http://www.modatel.org/.
25. Object Management Group: OMG’ Formal Specifications (2010) http://www.omg.org/.
26. Network Working Group, C.U.: Call Processing Language (CPL): A Language for User Control of Internet

Telephony Services (2004) http://www.ietf.org/rfc/rfc3880.txt.
27. Consel, C., Réveillère, L.: A dsl paradigm for domains of services: A study of communication services. In:

Domain-Specific Program Generation; International Seminar, Dagstuhl. (2004)
28. Burgy, L., Consel, C., Latry, F., Lawall, J., Palix, N., Réveillère, L.: Telephony software engineering:

A domain-specific language approach. Technical report, CCSd/HAL : e-articles server (based on gBUS)
[http://hal.ccsd.cnrs.fr/oai/oai.php] (France) (2005)

29. Wu, Y., Allen, A.A., Hernandez, F., Wang, Y., Clarke, P.J.: A user-centric communication middleware for cvm. In:
The 12th IASTED International Conference on Software Engineering and Applications (SEA 2008), ACTA (2008)
210–215

30. Zhang, C., Sadjadi, S., Sun, W., Rangaswami, R., Deng, Y.: A user-centric network communication broker for
multimedia collaborative computing. Multimedia Tools and Applications 50 (2010) 335–357 10.1007/s11042-
009-0385-6.

31. Allen, A.A., Wu, Y., Clarke, P.J., King, T.M., Deng, Y.: An autonomic framework for user-centric communication
services. In: CASCON ’09: Proceedings of the 2009 Conference of the Center for Advanced Studies on
Collaborative Research, New York, NY, USA, ACM (2009) 203–215

32. Forum, D.: Domain specific modeling (2010)
33. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv.

37 (2005) 316–344
34. C.Kang, K., Cohen, S.G., james A. Hess, Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis. Technical

Report CMU/SEI-90-TR-21, CMU (1990)
35. Deursen, A., Klint, P.: Domain-specific language design requires feature descriptions. Journal of Computing and

Information Technology 10 (2002) 2002
36. Group, o.: Object Constraint Language (OCL) (2007)
37. Heckel, R., Voigt, H.: Model-based development of executable business processes for web services. LNCS 3098

(2004) 559–584
38. Wang, Y., Clarke, P.J., Wu, Y., Allen, A., Deng, Y.: Runtime models to support user-centric communication.

Models@runtime Workshop in conjunction Models 2008 (2008) http://www.comp.lancs.ac.uk/
˜bencomo/MRT/ (Jan. 2009).

39. Triskell Team: Kermeta - breathe life into your metamodels (2009) http://www.kermeta.org/.
40. Hisano, K., Lamot, B.: Skype4Java (2010) https://developer.skype.com/wiki/Java_API.
41. Ignite Realtime: Smack api 3.1.0 (2009) http://www.igniterealtime.org/.
42. JML Development Team: Java msn messenger library (2010) http://sourceforge.net/projects/

java-jml/.
43. SIP Communicator Development Team: SIP Communicator (2010) http://sip-communicator.org/.
44. Tessier, J.: Dependency Finder (2010) http://depfind.sourceforge.net/.
45. The Eclipse Foundation: Eclipse test and performance tools platform (tptp) (2010) http://www.eclipse.

org/tptp/.
46. Digium: Asterisk (2010) http://www.asterisk.org/.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.skype.com/
http://ezweb.tid.es
http://www.modatel.org/
http://www.omg.org/
http://www.ietf.org/rfc/rfc3880.txt
http://www.comp.lancs.ac.uk/~bencomo/MRT/
http://www.comp.lancs.ac.uk/~bencomo/MRT/
http://www.kermeta.org/
https://developer.skype.com/wiki/Java_API
http://www.igniterealtime.org/
http://sourceforge.net/projects/java-jml/
http://sourceforge.net/projects/java-jml/
http://sip-communicator.org/
http://depfind.sourceforge.net/
http://www.eclipse.org/tptp/
http://www.eclipse.org/tptp/
http://www.asterisk.org/

32

Appendices
A. CML STATIC SEMANTICS

1. context ControlSchema

inv: self.communicationID<>null

and self.allInstances−>forAll (cs1,cs2| cs1.communicationID<>cs2.communicationID)

and self.attachedParty−>size() >1

and self.dataType−>forAll(d | d.oclIsTypeOf(MediumType) implies

self.conn−>exists(c| c.dataTypeRef.exists(df | df.oclIsType(MediumTypeRef) and

df.mediumTypeName==d.mediumTypeName) and

and c.device−>forAll(d| d.deviceCaps−>exists(cap|cap.capability == d.derivedFromBuiltInType))

and self.dataType−>forAll(d| d.oclIsTypeOf(FormType) implies

self.conn−>exists(c| c.dataTypeRef.exists(df | df.oclIsType(FormTypeRef) and

df.formTypeName==d.formTypeName) and

and d.subMediumType−>forAll (m| c.device−>forAll(d| d.deviceCaps−>exists(cap| cap.capability ==

d.derivedFromBuiltInType)))

and d.subFormType.flatten−>asSet()−>forAll(t| t.r.oclIsType(MediumTypeRef) implies

c.device−>forAll(d|d.deviceCaps−>exists(cap|cap.capability==d.derivedFromBuiltInType)))

2. context Connection

inv: self.connectionID <> null

and self.device−>size() >1

and self.allInstances−>forAll (c1,c2| c1.connectionID<>c2.connectionID)

and self.dataTypeRef −>forAll{dr| dr.oclIsType(MediumTypeRef) implies self.controlSchema.dataType −>exists (dt|

dt.oclIsTypeOf(MediumType) and dt.mediumTypeName == dr.mediumTypeName)}

and self.dataTypeRef −>forAll{dr| dr.oclIsType(FormTypeRef) implies self.controlSchema.dataType −>exists (dt|

dt.oclIsTypeOf(formType) and dt.formTypeName == dr.formTypeName)}

3. context AttachedParty

inv: self.person.personID == self.isAttached.personID

4. context IsAttached

inv: self.allInstances−>forAll (ia1,ia2| ia1.deviceID<>ia2.deviceID or ia1.personID<>ia2.personID)

and self.controlSchema.conn.device−>exists(d|d.deviceID==self.deviceID))

5. context MediumType

inv: self.derivedFromBuiltInType <> null and mediumTypeName <> null

6. context FormType

inv: self.subFormType−>size() + self.subMediumType−>size()>0

7. context Device

inv: self.deviceID <> null

and self.allInstances−>forAll (d1,d2| d1.deviceID<>d2.deviceID)

and self.conn.controlSchema −>exists(ap| ap.isAttached.deviceID== self.deviceID)

and self.allInstances−>select(d| d.isLocal==true)−>size() ==1

8. context Person

inv: self.personID <> null

and self.allInstances−>forAll (p1,p2| p1.personID<>p2.personID)

9. context DataSchema

inv: self.dataContent−>size()+ self.request−>size() >0

10. context Form

inv: self.allInstances−>forAll (f1,f2| f1.formID<>f2.formID)

and self.subForm−>size() +self.subMedium−>size()>0

11. context Medium

inv: self.allInstances−>forAll (m1,m2| m1.mediumName<>m2.mediumName)

Figure 14. CML Static Semantics.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

33

B. G-CML FOR THREE-WAY CONFERENCE SCENARIO

Figure 15. G-CML model created using the CVM prototype for supporting the scenario presented in Section
2. The model shown represents the scenario after Dr. Burke invites Dr. Sanchez to join the conversation with

Dr. Monteiro.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

34

C. THREE-WAY CONFERENCE SCENARIO IN USER-FRIENDLY GUI

Figure 16. Dr. Monteiro’s user interface showing the heart image of patient Baby Jane, during the conference
with Dr. Burke and Dr. Sanchez.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

35

D. X-CML FOR THREE-WAY CONFERENCE SCENARIO

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<controlSchema communicationID="_YCWW0DE4Ed-D97h4qLpucg">

<connection bandwidth="c1" connectionID="_JePiQDE6Ed-D97h4qLpucg">

<device isLocal="false" isVirtual="true" deviceID="_MGxqwDE6Ed-D97h4qLpucg">

<deviceCapability>TextFile</deviceCapability>

<deviceCapability>LiveAudio</deviceCapability>

<deviceCapability>VideoFile</deviceCapability>

<deviceCapability>NonStreamFile</deviceCapability>

</device>

<device isLocal="false" isVirtual="true" deviceID="_TFz5cDE6Ed-D97h4qLpucg">

<deviceCapability>TextFile</deviceCapability>

<deviceCapability>VideoFile</deviceCapability>

<deviceCapability>NonStreamFile</deviceCapability>

<deviceCapability>LiveAudio</deviceCapability>

</device>

<device isLocal="true" isVirtual="false" deviceID="_WNyXADE6Ed-D97h4qLpucg">

<deviceCapability>TextFile</deviceCapability>

<deviceCapability>LiveAudio</deviceCapability>

<deviceCapability>NonStreamFile</deviceCapability>

<deviceCapability>VideoFile</deviceCapability>

</device>

<mediumTypeNameRef>audio streaming</mediumTypeNameRef>

<formTypeNameRef>patient record</formTypeNameRef>

</connection>

<mediumType voiceCommand="start audio" derivedFromBuiltInType="LiveAudio"

mediumTypeName="audio streaming"/>

<formType action="send" suggestedApplication="default" formTypeName="patient record">

<mediumDataType>textFile</mediumDataType>

<mediumDataType>NonStreamFile</mediumDataType>

<mediumDataType>VideoFile</mediumDataType>

</formType>

<person personRole="Surgeon" personID="burke23" personName="burke"/>

<person personRole="Attending Physician" personID="monteiro41" personName="monteiro"/>

<person personRole="Refering Physician" personID="sanchez12" personName="sanchez"/>

<isAttached deviceID="_WNyXADE6Ed-D97h4qLpucg" personID="burke23"/>

<isAttached deviceID="_MGxqwDE6Ed-D97h4qLpucg" personID="monteiro41"/>

<isAttached deviceID="_TFz5cDE6Ed-D97h4qLpucg" personID="sanchez12"/>

</controlSchema>

Figure 17. X-CML control instance for the three-way communication between Dr. Burke, Dr. Monteiro and
Dr. Sanchez.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

36

Table V. State machine for schema (re)negotiation.

T. Source State Target State Event Guard Action
0 Initial NegReady
1 NegReady NegInitiated initiateNeg hasNegToken addNegBlock(CIneg)

genConnection Script
2 NegReady NegInitiated initiateReNeg hasNegToken addNegBlock(CIneg)
3 NegInitiated WaitingSameCI # remoteParty != 0 genSendCS Script
4 WaitingSameCI WaitingSameCI localSameCI # responses < #

remoteParty
5 WaitingSameCI NegComplete localSameCI # responses == genSendCS Script

remoteParty
6 NegComplete NegReady CIexe ← CIneg

UCI.notify(CIexe)
7 WaitingSameCI WaitingAnyCI localChangeCI # responses < #

remoteParty
update(CIneg)

8 WaitingSameCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

9 WaitingAnyCI WaitingAnyCI localSameCI # responses < #
remoteParty

10 WaitingAnyCI WaitingAnyCI localChangeCI # responses < #
remoteParty

update(CIneg)

11 WaitingAnyCI NegComplete localSameCI # responses == #
remoteParty

genSendCS Script

12 WaitingAnyCI NegComplete localChangeCI # responses == update(CIneg)
remoteParty genSendCS Script

13 WaitingSameCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
14 WaitingAnyCI WaitingAnyCI after t sec. # remoteParty > 1 update(CIneg)
15 WaitingSameCI NegTerminateInit after t sec. # remoteParty == 1
16 WaitingAnyCI NegTerminateInit after t sec. # remoteParty == 1
17 NegReady NegRequested inviteNeg notifyUCI InviteNeg
18 NegRequested NegTermRemote UCI.rejectInvite genRejectInvite Script
19 NegTermInit Final UCI.notify(CIexec)

genCloseConnect Script
20 NegTermRemote Final
21 NegRequested WaitingConfirm UCI.acceptInvite genConnection Script

genSendCS Script
22 WaitingConfirm NegComplete remoteSameCI
23 WaitingConfirm WaitingConfirm remoteChangeCI update(CIneg)

genSendCS Script
24 WaitingConfirm NegTermRemote after t sec. UCI.notify(CIexe)

genCloseConnect Script
25 NegReady SelfRemoved removeSelf hasNegToken genRemoveSelf Script
26 NegReady NegReady removeParty # remoteParty > 1 update(CIneg)

CIexe ← CIneg

genRemoveParty Script
27 NegReady Final removeParty # remoteParty == 1 genCloseConnect Script

UCI.notify(CIexe)
28 SelfRemoved Final

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

37

Table VI. State machine for media transfer.

Tr. Source State Target State Event Guard Action
0 Initial Ready initiateNeg ‖ inti-

ateInviteNeg
1 Ready StreamEnabled enableStream genStreamEnable Script
2 Ready StreamEnabled enableStreamRec genStreamEnableRec Script

UCI.notify(DSi+1)
3 StreamEnabled StreamEnabled enableStream !IsStreamEnabled genStreamEnable Script
4 StreamEnabled StreamEnabled disableStream IsStreamEnabled

&& # streams > 1
genStreamDisable Script

5 StreamEnabled StreamEnabled enableStreamRec !IsStreamEnabled genStreamEnableRec Script
UCI.notify(DSout)

6 StreamEnabled StreamEnabled disableStreamRec IsStreamEnabled
&&

genStreamDisableRec Script

streams > 1 UCI.notify(DSout)
7 StreamEnabled StreamEnabled sendNonStream genNonStreamSend Script
8 StreamEnabled StreamEnabled sendForm genSendForm Script
9 StreamEnabled StreamEnabled recNonStream UCI.notify(DSout)
10 StreamEnabled StreamEnabled recForm UCI.notify(DSout)
11 StreamEnabled Ready disableStream # streams == 1 genCloseStream Script
12 StreamEnabled Ready disableStreamRec # streams == 1 genCloseStreamRec Script

UCI.notify(DSout)
13 Ready Ready sendNonStream genNonStreamSend Script
14 Ready Ready sendForm genSendForm Script
15 Ready Ready recNonStream UCI.notify(DSout)
16 Ready Ready recForm UCI.notify(DSout)
17 Ready Final terminate

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

38

Table VII. Static metrics for the CVM prototype.

Metrics utils uci se ucm ncb Totals
SLOC 1,949 5,108 963 737 1,659 10,416
packages 5 6 6 5 7 29
classes 48 192 22 28 59 349
methods 407 746 156 131 333 1,773

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

39

Table VIII. Average Time for Realizing N-way Audio Conferencing.

Synthesis Realization Execution Synthesis
N (SE Driver, UCM Stub) (SE Driver) (UCM Driver) Overhead

(sec) (sec) (sec) (%)

2 1.1718 8.9921 7.4123 15.24
3 1.8004 23.7443 21.2950 11.27
4 2.0645 24.3403 22.1056 7.94
5 2.4239 26.9299 23.8750 10.52
6 2.7581 34.4373 32.4534 6.46
7 3.1679 45.3998 43.4514 5.24

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

	1 Introduction
	2 Motivation
	3 Related Work
	3.1 Converged and User-Centric Communication
	3.2 Model Driven Initiatives For Communication
	3.3 CVM Technology

	4 CML - A DSML for User-Centric Communication
	4.1 Domain Analysis
	4.2 Meta-Model
	4.3 Concrete Syntax
	4.4 Illustrative Example

	5 Dynamic Synthesis of CML models
	5.1 Overview
	5.2 Semi-formal Behavioral Model for Dynamic Synthesis
	5.3 Synthesis Algorithms
	5.4 Negotiation
	5.5 Media Transfer
	5.6 Validation of Dynamic Synthesis using Kermeta

	6 CVM Prototype
	7 Evaluation
	7.1 Experiment Setup
	7.2 Results
	7.3 Discussion

	8 Concluding Remarks
	9 Acknowledgments
	A CML Static Semantics
	B G-CML for Three-way Conference Scenario
	C Three-way Conference Scenario in User-Friendly GUI
	D X-CML for Three-way Conference Scenario

