
Virtual Environments: Easy Modeling of

Interdependent Virtual Appliances in the Cloud

Xabriel J. Collazo-Mojica

S. Masoud Sadjadi

Florida International University

{xcoll001,sadjadi}@cs.fiu.edu

Fabio Kon

Universidade de São Paulo

fabio.kon@ime.usp.br

Dilma Da Silva

IBM T.J. Watson Research Center

dilmasilva@us.ibm.com

Abstract

We present our ideas for modeling groups of interdependent
virtual machines in the cloud. We call these models virtual
environments. This abstraction is built on top of virtual ap-
pliances and the services they provide. We discuss previous
attempts in this domain and present our motivations for
working on an uncomplicated model for non-expert users
of cloud computing such as Web developers and CS stu-
dents. Visual and internal representations of the model are
presented. Early work on a prototype implementation is de-
scribed. We argue that easier-to-use models such as ours are
needed for today’s and tomorrow’s distributed applications.

Keywords virtual environment, virtual appliance, flexible
modeling, cloud computing.

1. Introduction

In this position paper, we present our ideas for modeling
groups of interdependent virtual machines in the cloud. De-
signing these compositions require a good understanding of
the underlying details such as the software installation or
the network configuration. They are typically deployed in
a cloud layer called Infrastructure as a Service (IaaS). Each
IaaS provider has different APIs to configure the virtual ma-
chines and their connections, requiring the user to learn the
details of a new API if they would like to migrate. As of now,
users such as Web developers and CS students have to deal
with these low-level details, which may entail configurations
that depend on various machines in the environment. Re-
search has pointed the need for better tools for composition
in the cloud [16]. Clearly, an easier to understand model can
help non-experts in cloud computing to develop solutions in
this domain.

Sapuntzakis et al. presented in 2003 the idea of a virtual
appliance, effectively treating full stacks of software appli-
cations and OS as updatable image files [15]. These virtual
appliance files could then be cloned in bare metal comput-
ers, or instantiated in virtual machines. Still, when the time
comes to compose multi appliance systems with interdepen-
dencies, Sapuntzaki’s implementation relied on defaults from
software vendors for most of the configurations. This may
not be the case for software in Web development (e.g., when
trying to configure a database server and its clients). Sim-
ilarly, the configuration of the network connection between
appliances had to be done by hand. In addition, various
recent attempts at automatically configuring virtual appli-
ances and their network dependencies have been presented
[10, 11, 13], but they all rely on having experts on appliance
configurations, or on specific IaaS providers.

We propose that with proper modeling of these kind of sce-
narios, the configuration problems can be abstracted away
for non-experts. We call these models virtual environments.
By designing virtual environments, non-expert users can eas-
ily architect interdependent virtual appliances. The key idea
is to model each appliance with the services they provide.
We model these services with service endpoint connections.
How many service endpoints an appliance has depends on
the installed applications. These endpoint connections allow
an appliance to be seen as providing and/or consuming other
appliance’s services. This way, users can compose appliance
to appliance dependencies by matching service consumers
with service providers. No notion of the underlying network
nor software provisioning needs to be done. Other interest-
ing detail of this abstraction is the separation of the model
from the deployment, effectively decoupling the virtual en-
vironment from the IaaS provider.

Although this model simplifies composition for end users,
it also presents various technical challenges. The principal
ones are: 1) network and software configurations need to be
inferred from the specified service endpoint connections, 2)
changes in the environment model need to be reflected on
running deployments, and 3) virtual environment models
should be deployable on different IaaS providers. These are
very interesting problems in the areas of autonomic comput-
ing, model transformation, and systems. Our research group
has worked on these topics before and we intend to leverage
our experience to tackle these problems.

In the rest of this paper, we focus on the modeling aspect
of virtual environments. Specifically, we present the details
of our flexible modeling approach and we discuss a proto-
type system in which non-expert users can design these en-
vironments. We argue that our approach is a natural way to
specify appliance to appliance dependencies.

2. Motivation and Related Work

Our research is driven by the needs of non-expert users of
cloud computing like Web Developers and CS students. At
Florida International University, we have a new IT curricula
where students pick up the skills necessary to run today’s
datacenters [4]. We simulate real scenarios by the use of
virtualization, and students have to configure everything
from scratch. Nonetheless, we also want to push forward
virtual infrastructure management. As most CS students
today are novice users of virtualization and cloud computing
services, we believe that they are good candidates to prove
the usefulness of new modeling ideas. We have identified the



need of a flexible tool to allow students to deploy working
systems from day one of usage.

Similarly, we envision that different IaaS APIs and providers
will continue to proliferate. Web developers should not be
bothered by the configuration details of interdependent vir-
tual machines, and they should be able to deploy working
solutions by themselves and without the help from virtu-
alization and IaaS experts. That is, we have identified the
need for better abstractions from the current IaaS implemen-
tations provided by vendors such as Amazon [2] or GoGrid
[6]. Thus, we propose a modeling approach that is abstract
enough to allow these interdependent systems to be easily
designed, is fast to deploy, and limits the effects of IaaS ven-
dor lock-in.

Teaching computer networks using virtual machines and
virtual networks has been researched before by the GINI
project [14]. They provide the user with ‘lightweight virtual
elements’, which can be instantiated on laptop and desktop
computers. However, they only support ‘user-mode Linux’
instances, which are not sufficient for many of todays IaaS
providers.

Commercial applications implementing a similar modeling
approach are available [1, 3]. They only offer closed-source
implementations and only work on their proprietary cloud
platforms. IBM has worked on a similar project, but their
implementation assumes that users are experts in the do-
mains of virtual image provisioning, image composition, and
composition deployment [13]. While they target enterprise
customers, we target non-expert cloud users.

Platform as a Service (PaaS) providers, such as Google
AppEngine [7], abstract away the underpinnings of a fully
working web application. Of course, this means that the
user has to learn the vendor’s API, and that migrating the
application to other PaaS provider implies changing most of
the implementation. Our work envisions models that once
specified do not need to be changed because of a vendor
switch.

3. Virtual Environments

A virtual environment is a model of a group of interdepen-
dent virtual appliances. The life-cycle of these environments
is presented in Figure 1. First, the user should design the en-
vironment. Designing an environment entails specifying vir-
tual appliances and defining properties between them. Once
designed, virtual environments can be modified or deployed.
Modifying an environment is changing some specification of
an appliance or a relation between appliances. Deploying
an environment is enacting the model in an IaaS provider.
Once deployed, a virtual environment could suffer a change
to any of these states: terminated, dynamic modify or static
modify. Terminating a virtual environment is simply shut-
ting down all the appliances of the running model. Dynamic
modification entails making a change to the model (e.g.,
adding appliances or modifying properties between appli-
ances) while it is in the deployed stage. Static modification
is similar to dynamic modification, but the environment is
shutdown temporally before the changes, and re-deployed
after the modifications.

From the point of view of the end-user, virtual environments
should have the following properties:

1. Easy to understand: views for the design, deployment,
change management, and monitoring of these environ-

design

modify deployed

terminated dynamic modify temporal shutdown

static modify

Figure 1. Life-cycle of a virtual environment.

Figure 2. Service endpoint connection between two appli-
ances.

ments should only presents what is strictly necessary to
realize them. Advanced options should be available but
normally hidden.

2. Self-configurable: once the user has specified a basic
description of what he/she needs, the model should be
able to instantiate and configure all the details automat-
ically by following some general policies.

3. Present deployment choices: modeling should be ab-
stract enough to allow for an implementation to present
deployment choices. Given the variability of current IaaS
APIs, this is the main challenge of our approach.

3.1 Visual Model

Research has shown the benefits of visual aids when de-
signing system architectures, claiming a gain of over 60%
in comprehension [12]. Since our target users are supposed
to be non-experts in configurations for the cloud, a graphi-
cal representation is desirable. We model virtual appliances
with boxes with service endpoints. The boxes represent all
the necessary software, the OS and the configurations nec-
essary to support the services provided or consumed by the
endpoints. Figure 2 presents an example of two virtual ap-
pliances. The box entitled ‘RoR Node’ is a representation of
an appliance provisioned with the Ruby on Rails web frame-
work (and all other needed software). Similarly, the box enti-
tled ‘MySQL DB’ is an appliance provisioned with a MySQL
database. These appliances have been interconnected with
a ‘db’ link by joining the corresponding endpoints. In our
model, there is no need to configure IP addresses, ports or
configuration files. Endpoints have type and are inspected
with a dictionary of valid connections. If any is found to be
invalid, a visual cue will be provided to the user.



Figure 3. A complete virtual environment model.

Using our visual model, users will be able to design full
appliance-based architectures. On Figure 3, we present a
full representation of a typical dynamic web deployment.
Building from Figure 2, we have added two more Ruby on
Rails nodes, a load balancer, and a special node to enable
HTTP traffic in the environment. Note that all connections
are modeled by the services that each appliance consumes
or provides.

3.2 Internal Model

Once the user has designed a virtual environment, it would
be persisted in a XML representation. Figure 4 shows a sim-
plified version of the XML that is generated from the exam-
ple environment in Figure 2. This representation includes
a list of the software packages that each appliance needs
(lines 9-11 and 20-21). This information is used for the pro-
visioning of each appliance. A user can choose to deploy an
instance of a virtual environment, to later make modifica-
tions to the model, and then deploy another instance of the
model. Because we intend to provide the ability for runtime
modifications, we need to keep track of the model of each
separately instantiated environment. Therefore, we include
revision data for both full environments and individual ap-
pliances (lines 2,5, and 16).

Because endpoint connections have type, we can also include
special properties in the connections (lines 29-35). These
do not need to be specified, but are allowed. Figure 4 in-
cludes a ‘MaxAllowedConn’ property in the database con-
nection between the appliances (line 31). As all service end-
point connections are explicitly stated on the model, security
measures can be taken. Note that the only service endpoint
specified in the XML example is the database connection.
Therefore, all other ports in both appliances can be safely
blocked when the environment is deployed. This could be re-
alized, for example, by utilizing the IaaS provider’s security
features (e.g., Amazon’s EC2 security groups [2]).

3.3 Trade-Offs

Administrator users manage the availability of service inter-
faces, which are bundles of needed endpoints and software
dependencies for specific software packages. Going back to
Figure 2, the service interface for the Ruby on Rails service
is the bundle of endpoints ‘http’, ‘db’, and ‘log’. The user
composes appliances by selecting which service interfaces
he/she would like to have in an appliance.

This constrain limits the possibilities of software packages.
That is, the user will not be able to design appliances with
software that is not known by the admin. This strict control

�
1 <?xml ver=” 1 .0 ” encoding=”UTF−8”?>

<VirtualEnvironment rev=”1”>
3 <VENodeList>

<VENode>
5 <Appliance rev=”1”>

<name>RoR Node</name>
7 <guestOS ver=” 10.04 ”>Ubuntu</guestOS>

<dependencies>
9 <dep ver=” >2.2.16”>Apache HTTPD</dep>

<dep ver=” 2 . 3 . 8 ”>Ruby on Ra i l s</dep>
11 <dep ver=” 1 . 2 . 3 ”> . . . e t c . . .</dep>

</ dependencies>
13 </Appliance>

</VENode>
15 <VENode>

<Appliance rev=”2”>
17 <name>MySQL DB</name>

<guestOS ver=” 10.04 ”>Ubuntu</guestOS>
19 <dependencies>

<dep ver=” 5 . 1 . 4 9 ”>MySQL</dep>
21 <dep ver=” 1 . 2 . 3 ”> . . . e t c . . .</dep>

</ dependencies>
23 </Appliance>

</VENode>
25 </VENodeList>

<VENodeRelationList>
27 <VENodeRelation>

<n1Name>RoR Appliance</n1Name>
29 <n1Int type=”database−consumer”>db</n1Int>

<r e l a t i o nP r op e r t i e s>
31 <prop key=”MaxAllowedConn”>5</prop>

<prop key=”Etc”> . . .</prop>
33 </ r e l a t i o nP r op e r t i e s>

<n2Name>MySQL DB</n2Name>
35 <n2Int type=”database−prov ider ”>db</n2Int>

</VENodeRelation>
37 </VENodeRelationList>

</VirtualEnvironment>
� �

Figure 4. Example XML of a virtual environment.

helps to have a manageable number of configuration alterna-
tives. This is a needed trade-off to keep the administration
burden low.

4. Prototype

We have developed a limited prototype that allows users
to specify virtual appliances, virtual environments, and can
also schedule environments for instantiation and deploy-
ment. The current implementation is built on top of the
Ruby on Rails platform [8]. Only the user interface and the
internal representation of the model are functional as of now.
The latest version of the project can be accessed at [5]. It is
licensed under GPLv3.

In the prototype, a user can first choose which broad soft-
ware packages are needed in each appliance. The system can
then infer which endpoints are needed according to the cho-
sen packages. To design virtual environments, we developed
a visual modeling view, presented in Figure 5. The current
implementation is based on the WireIt Library [9]. It pro-
vides a drag-and-drop interface, where users compose the
desired environment by dragging the already defined appli-
ances and connecting the service endpoints with wires. Once
the user is done with the design, he/she can click on the ‘de-
ploy’ button, where a wizard will be presented as to enact
the environment. We are currently working on this feature.

The prototype also presents an admin view where new ser-
vice interfaces can be defined. Recall that service inter-
faces are sets of endpoint connections. Another future admin
view would provide the ability to manage the available IaaS
providers.

5. Concluding Remarks and Future Work

In this position paper, we presented our ideas for modeling
groups of interdependent virtual machines in the cloud.
First, we introduced the problem by referring to previous



Figure 5. Designing a virtual environment.

work in the area. Although there is recent related work which
try to address similar problems, none of these solutions
present abstractions appropriate for non-experts. We defined
our virtual environment model by presenting its life-cycle
and properties. A visual and internal representation for these
environments was discussed, including the main trade-off
of the approach. Finally, an early prototype with limited
functionality was introduced.

We envision that our idea of abstracting away unnecessary
configuration details from non-expert users will enable fast
deployment of working systems through an automatic con-
figuration process. For future work, in short term, we hope
to have a prototype that can deploy fully working virtual
environments with dynamic change support. In long term,
we will put our efforts on providing various IaaS deployment
choices.

Acknowledgments

We appreciate the discussions held with David Villegas.
This work was supported in part by the National Science
Foundation under OISE-0730065, by the US Department of
Education under P200A090061, and by IBM.

References

[1] 3Tera Inc., Aug 2010. URL http://www.3tera.com/.

[2] Amazon Elastic Compute Cloud, Aug 2010. URL http://
aws.amazon.com/ec2/.

[3] Elastra Corporation, Aug 2010. URL http://www.elastra.
com/.

[4] FIU’s IT Automation Course, Aug 2010. URL http://
users.cis.fiu.edu/~sadjadi/Teaching/IT%20Automation/
Spring%202010/Syllabus.html.

[5] Virtual Environments Designer Portal, Aug 2010. URL
http://acrl.cis.fiu.edu/ve_designer.

[6] GoGrid Cloud Hosting, Aug 2010. URL http://www.gogrid.
com/cloud-hosting/cloud-servers.php.

[7] Google App Engine, Aug 2010. URL http://code.google.
com/appengine/.

[8] Ruby on Rails Web Framework, Aug 2010. URL http://
rubyonrails.org/.

[9] WireIt - A Javascript Wiring Library, Aug 2010. URL
http://javascript.neyric.com/wireit/.

[10] T. Chen, Y. Wang, Y. Ren, C. Luo, D. Qian, and Z. Luan.
R-ECS: reliable elastic computing services for building vir-
tual computing environment. ICIS ’09: Proceedings of the
2nd International Conference on Interaction Sciences: In-
formation Technology, Culture and Human, Nov 2009.

[11] K. Keahey and T. Freeman. Contextualization: Providing
One-Click Virtual Clusters. eScience, 2008. eScience ’08.
IEEE Fourth International Conference on, pages 301–308,
2008. doi: 10.1109/eScience.2008.82.

[12] J. Knodel, D. Muthig, and M. Naab. Understanding software
architectures by visualization–an experiment with graphical
elements. Reverse Engineering, 2006. WCRE ’06. 13th
Working Conference, pages 39–50, 2006.

[13] A. Konstantinou, T. Eilam, M. Kalantar, A. Totok,
W. Arnold, and E. Snible. An architecture for virtual so-
lution composition and deployment in infrastructure clouds.
VTDC ’09: Proceedings of the 3rd international workshop
on Virtualization technologies in distributed computing, Jun
2009.

[14] M. Maheswaran, A. Malozemoff, D. Ng, S. Liao, S. Gu,
B. Maniymaran, J. Raymond, R. Shaikh, and Y. Gao. GINI:
a user-level toolkit for creating micro internets for teaching
& learning computer networking. SIGCSE ’09: Proceedings
of the 40th ACM technical symposium on Computer science
education, Mar 2009.

[15] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,
J. Chow, M. S. Lam, and M. Rosenblum. Virtual appli-
ances for deploying and maintaining software. LISA ’03:
Proceedings of the 17th USENIX Large Installation Systems
Administration Conference, pages 181–194, Aug 2003.

[16] K. Sripanidkulchai, S. Sahu, Y. Ruan, A. Shaikh, and C. Do-
rai. Are clouds ready for large distributed applications?
SIGOPS Operating Systems Review, 44(2), Apr 2010.

http://www.3tera.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.elastra.com/
http://www.elastra.com/
http://users.cis.fiu.edu/~sadjadi/Teaching/IT%20Automation/Spring%202010/Syllabus.html
http://users.cis.fiu.edu/~sadjadi/Teaching/IT%20Automation/Spring%202010/Syllabus.html
http://users.cis.fiu.edu/~sadjadi/Teaching/IT%20Automation/Spring%202010/Syllabus.html
http://acrl.cis.fiu.edu/ve_designer
http://www.gogrid.com/cloud-hosting/cloud-servers.php
http://www.gogrid.com/cloud-hosting/cloud-servers.php
http://code.google.com/appengine/
http://code.google.com/appengine/
http://rubyonrails.org/
http://rubyonrails.org/
http://javascript.neyric.com/wireit/

	Introduction
	Motivation and Related Work
	Virtual Environments
	Visual Model
	Internal Model
	Trade-Offs

	Prototype
	Concluding Remarks and Future Work

