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Abstract—Reducing the energy consumption of computing
systems has been the topic of many research studies. Specifically,
optimizing the energy consumption of applications is important
to reduce the carbon footprint and the associated costs. In
this paper, we detail a method to profile the energy usage of
distributed simulations in a grid environment and conduct several
experiments towards characterizing the power behavior of our
PRIME network simulator. We conclude that although PRIME
shows a high level of parallelization in some scenarios, the energy
consumption increases significantly as more compute nodes are
used to run a network model. Also, we show that cross-traffic
has a tremendous impact in the energy usage.

Index Terms—Network Simulation, Energy consumption

I. INTRODUCTION

Some recent reports claim that the global IT sector is
responsible for about 2% of human carbon dioxide emissions
each year, very similar to the global airline industry. Many
different research fronts are open to tackle this problem. One
of these focuses on building instruments to help research
community understand how to measure and minimize energy
consumption, e.g., the GreenLight [1] project. Others focus on
optimizing the energy consumption at three different levels:
1) architectural, i.e., reduce the processor energy usage, 2)
system, and 3) application. Regarding the latter, growing
concern about the carbon footprint of computing systems [2],
[3] is a major drive for energy optimization of applications.
Not less important are the increases in the energy utility bills,
IT power provisioning, backup infrastructure, and cooling
equipment.

In this paper we profile the energy consumption of our
PRIME [4] network simulator as the first step towards its
future energy optimization. Many different approaches can
be used to profile the energy consumption of a application,
including: simulation, measurement and estimation. In [5],
the authors created an architectural simulator with the goal
of estimating the power consumption of a CPU. These es-
timates are based on hardware power models and resource
usage obtained from cycle-level simulation. Similarly, in [6]
a complete system simulator for power profiling is proposed.
This approach relies entirely in simulation and hardware power
models to generate power profiles that can be used to help
improve designs and power optimization techniques.

Other research efforts focus on measuring the energy usage
using hardware equipment. For instance, JouleSort [7], a

energy-efficiency benchmark with fully specified workload,
metric, and rules, used a digital power meter between the sys-
tem and the outlet. In [8] the authors used direct measurements
to calculate the power consumption of a computer system,
a pocket computer in this case. Their approach consists of
measuring the current across one of the resistors located in
the power circuit of the computer. With the current and the
voltage supplied known, they obtain the instantaneous power
rating of the circuit, which is integrated over a given period
of time yielding the total energy consumed.

Different to aforementioned approaches, other studies trust
on hardware resource measurements to estimate energy usage.
In [9], estimates for CPU power consumption are obtained
based on hardware measurements. This method relies on the
utilization of performance counters to obtain data such as
cache misses, bus transactions, branch mispredictions and
instructions retirement in order to estimate activity. A similar
approach is taken in [10]. There, the energy consumption is
estimated to provide software developers visibility into the
application’s energy usage at design time.

Our ultimate goal is to enable our discrete-event network
simulator, PRIME [4], with power-awareness, i.e., the simula-
tor will provide some insight to the experimenter regarding the
expected energy-consumption of a network model. In this way,
the experimenter can make ”green” decisions by choosing a
particular execution environment of a network model. To that
end, in this document we detail a method to profile the energy
consumption of distributed simulators and perform several
experiments to characterize the power consumption of PRIME
in order to identify the main factors that lead to an increase of
it. Our approach is similar to [9] and [10], which rely on the
measurement of the usage of hardware resources. Specifically,
we conduct our studies considering the CPU, Memory, Disk,
and NIC. We use the NCSA’s Lincoln [11] cluster; which
provides many useful tools for application’s profiling. Several
experiments are performed within two main scenarios that we
detail in section IV.

The rest of the paper is organized as follows. In Section II,
we briefly describe the salient features of our PRIME network
simulator. Section III is devoted to detail the approach used
to estimate the energy consumption. Section IV describes our
experiments and the obtained results. Finally, we conclude this
paper and outline our future work in Section V.



II. THE SIMULATOR

Key to our case study is the PRIME network simulator;
whose energy behavior is profiled in this document. In the
following paragraphs we describe the most salient features of
PRIME relevant to this paper.

PRIME stands for Parallel Real-Time Immersive network
Modeling Environment [4]. The parallel discrete-event sim-
ulation engine used by PRIME is based on the Scalable
Simulation Framework (SSF), which is a standard API for
parallel large-scale simulation [12]. PRIME can run on most
parallel platforms, including shared-memory multiprocessors
(as a multi-threaded program), distributed-memory machines
(via the message-passing interface), or a combination of both.
Supporting parallel and distributed simulation allows PRIME
to run extremely large network simulations.

A rich set of network elements is provided by PRIME:
routers, links, network queues, and protocol implementations,
including TCP, ICMP, UDP, and various application-layer pro-
tocols (such as FTP and HTTP). These network elements and
protocols can be used to construct various network experiment
scenarios. In [13], PRIME is used to show the potential
of real-time simulation for studying complex behaviors of
distributed applications under large-scale network conditions.
In order to increase realism in simulation studies, we ported
thirteen Linux TCP variants to PRIME [14]. Furthermore, we
enhanced our previous implementation to include real TCP
message exchanges in such a way that real TCP instances can
communicate seamlessly with PRIME simulated hosts.

PRIME has been shown to be capable of simulating and
emulating large scale scenarios [13]. In there, 25 machines
with OpenVZ images where loaded using Emulab [15]. Twelve
physical machines were used to run PRIME simulator, 12
others ran 1008 CoralCDN [16] instances (inside OpenVZ
containers), and 1 machine was devoted to run an Apache web
server. During those experiments, 3 metrics were collected:
cache hit rate, web server load, and response time.

In this document, we make use of PRIME’s capabilities to
simulate large-scale scenarios in our experiments.

III. ENERGY ESTIMATION

In a grid environment, multiple jobs are running concur-
rently and it is not known exactly when a job is going to
be scheduled for execution. Furthermore, we have limited
access to cluster machines on Teragrid [17]. In consequence,
directly measuring the energy consumption of our simulations
is not feasible. Instead, we estimate the energy consumption
through resource usage. We use a simple and feasible energy
model similar to that used in [10] and [18]. In our model, the
energy consumption of a particular resource is a function of its
states(e.g, read, write, idle, etc). For our calculations, we take
into account four resources: CPU, memory, Disk, and NIC.

Thus, the expressions we use to estimate the energy con-
sumption are the following:

Etotal = ECPU + EMem + EDisk + ENet (1)

=
∑

i∈R

∑
j∈Si

(Pij ∗ fij)

 ∗ T (2)

In the above equation, R is the set set of resources we are
considering. Si is the set of states of each resource i. Pij is
the power of resource i in state j. fij is the percentage of time
that the resource i is in state j during the experimentation time.
Finally, T is the time that each resource is used, which in our
setup is the same for every one.

The approach presented above is general and can be ap-
plied to estimate the enegy consumption of any application.
Throughout the whole study we consider two states for each
resource: active and idle. Then, our estimation focuses on com-
puting the time that our application uses a specific resource
(Tactive). Using the specific power consumption corresponding
to each resource in active and idle states, Pactive and Pidle

respectively, we use the following expression to calculate the
energy consumed by each resource:

Eresource = PactiveTactive + Pidle(T − Tactive) (3)

In the next subsections we briefly describe the specific
considerations applied for each resource.

1) CPU: We use the expression shown below to estimate
the CPU time, i.e., the time that our application uses the CPU.

TimeCPU =
Cyclesapp

clockSpeed (4)

In the expression shown above, TimeCPU is time that our
application uses the CPU, Cyclesapp is the number of CPU
cycles our application has occupied the CPU, and clockSpeed
is the number of clock cyles per second.

2) Memory: If Data/Instructions are not found in L1 and
L2 caches, the main memory is accessed and a line (which
ranges in size from 8 up to 512 bytes across different processor
architectures) is fetched. Also, when this happens, not only a
line is fetched from the memory but also more data from it
is loaded by the pre-fetcher (e.g. a Pentium-4 processor loads
256 bytes). For the estimation of the time our application uses
the memory, we take into acccount the memory accesses due
to L2 cache misses and not the data prefetched because of the
reasons we detail in section IV.

Assuming that one line is fetched per access (we do not
consider prefetched data) we calculate the time per memory
access as follows:

TimeMemAcess = TRCD + ((CL − 1) ∗ CycleT ime) +
TAC (5)

In the expression shown above, TRCD is the time required
between the computer defining the row and column of the
given memory block and the actual read or write to that
location. CL or column Address Strobe(CAS) latency is the
time between the moment the memory controller tells a
memory module to access a particular memory column, and
the moment the data from the given array location is available
on the module’s output pins. TAC is the time to fetch the
actual data.
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Fig. 1. Campus network.

The total time our application uses the memory is then
computed as follows:

TimeMem = L2misses ∗ TimeMemAcess (6)

3) Disk: In order to perform precise measurements, tools
like blktrace can be used. blktrace is a block layer IO tracing
mechanism which provides detailed information about request
queue operations up to user space. However, a patch to
the Linux kernel which includes the kernel event logging
interfaces, is needed and we do not have it available in our
experimentation environment, i.e. Teragrid [17]. Instead we
use strace as the tool to record all read and write system calls
to approximate the time that our application accesses the disk.

In order to estimate the time that our application uses the
disk, denoted by TimeDisk, we make two asumptions: first, we
assume that the files being transferred from the disk are not
fragmented, this is a reasonable assumption as most of these
files are newly created; second, we use the internal sustained
transfer rate obtained by averaging the innermost track transfer
rate with the outermost track transfer rate, both of these rates
are provided in the manufacturer’s specifications. In this way,
we obtain the TimeDisk using the following expression:

TimeDisk = BytesDisk

InternalSustainedTransferRate (7)

In the above expression, BytesDisk is the total number of
bytes written and read to and from the disk.

4) NIC: We did not compute the energy consumed in the
NIC because of lack of data regarding the hardware devices
but we did count the number of packets that are sent between
physical machines; which are the packets that actually go
through the network.

IV. EXPERIMENTS

A. The Network Model

The network model we used for our study is an inter-
connected network composed of 20 campus networks. A cam-
pus network consists of more than 500 end-hosts connected
by 30 routers, as shown in Fig. 1. This simulated topology
contains four subnets; within net2 and net3, there are 12 local

area networks (LANs), each configured with a router switch
and 42 end-hosts. The LANs are 10 Mbps networks. The
links connecting routers within net1 and net2 are set with a
bandwidth of 100 Mbps and a link delay of 10 ms.

B. Environment Setup

We conducted our experiments on Teragrid [17], a grid
environment which features high-performance computers, data
resources and tools, and high-end experimental facilities.
PRIME was configured therein to run as a distributed sim-
ulator, i.e., multiple instances can run on multiple compute
nodes to take advantage of multi-processors or multi-cores,
and installed on the Lincoln [11] cluster. We chose the Lincoln
cluster because it provides a number of installed utilities for
profiling applications, e.g., Perfsuite. Another tool that we used
is strace, a debugging utility in Linux to monitor the system
calls used by a program and all the signals it receives.

PerfSuite [19] is a collection of tools, utilities, and libraries
for software performance analysis. Perfsuite uses the Per-
formance Application Programming Interface [20] (PAPI), a
consistent interface which enables users to profile software
using processor events. Compute nodes on the Lincoln cluster,
log these events, i.e., occurrences of specific signals related to
the processor’s function. We use two specific command line
utilities from Perfsuite: psrun and psprocess. We use psrun
to gather hardware information from unmodified software.
Running this command using an executable (PRIME in our
case) as a parameter, creates an xml file with performance
information related specifically to the passed application. We
use psprocess to post-process the results of a performance
analysis experiment; namely, the xml file created after running
psrun. The execution of this command causes a number of
derived metrics to be generated based on the ones measured
when running psrun. It is important to remark that, depending
in the hardware architecture, only some events captured at
processor-level are available. In PAPI Standard Events by
Architecture [20] it is detailed the set of events captured for
each architecture.

We use Perfsuite, strace, and output information provided
by PRIME to gather information about the usage of each
resource we consider in our study. For the CPU we got the
TimeCPU directly from the output of psprocess. Regarding
the memory, we did not take into consideration the amount of
data prefetched from the memory because the PAPI PRF DM
(data prefetch cache misses) PAPI event is not available in the
infrastructure provided by Lincoln in Teragrid. Thus, using
expression 6 and the number of L2 cache misses obtained from
psprocess we approximate TimeMem. TimeDisk is estimated
using the strace Linux command. We parse the output of
strace in order to get the number of bytes associated with
each read and write system call. From there, we sum all bytes
and use the average internal sustained transfer rate to get an
approximation of TimeDisk. Finally, for the NICs we count
the number of packets transmitted between compute nodes.
The energy consumed by the NICs will be proportional to the
number of packets received from and transmitted to it. Thus, in
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Fig. 2. Process followed to get final results

counting the packets we do not attempt to compute the energy
consumption, but to provide a way to compare the profile of
different network models.

C. Experiments and Results

The performance of distributed simulations, i.e., the wall-
clock time it takes to complete, and the energy consumption
depend on a number of factors, including: network model
being run, and number of compute nodes used. Here, we
profile the energy consumption of distributed simulations by
exploring these two parameters. The network model can be
changed in various ways; in this document we vary the
amount of cross-traffic, i.e, the traffic that goes between two
compute nodes. To explore the effect of changing the number
of compute nodes, we run PRIME using a different amount
of nodes for each set of experiments.

We profiled the energy consumption of PRIME using two
different scenarios. The first scenario aims to study the energy
signature of a network model where there is no cross-traffic
between compute nodes running a subnetwork. To that end, at
every particular run we use the same network model (traffic,
topology, and applications) as the number of compute nodes
increases; but assuring that no packet crosses a compute node
boundary. For the second scenario, the objective is to study
the energy signature of a network model as we increase
the amount of cross-traffic while using a fixed number of
compute nodes for the simulation. Thus, we fixed the number
of compute nodes to 20 and increased the percentage of cross
traffic by increments of 10 percent for each set of experiments.

In both scenatios, each client in the 20-campus network
requests packets from a server (see Fig. 1). The servers were
configured to send packets upon request, using TCP, according
to a deterministic function. In order to change the amount of
cross-traffic, we set a client to request packets from either a
server in a campus network running on the same compute node
(no cross-traffic) or a server running on another compute node.
Regarding the number of compute nodes used, we partition the
20-campus network model using a service provided by PRIME
which uses METIS [21].

The steps followed from the configuration of an experiment
up to the generation of the final results are shown in Fig. 2.
First, the network model is customized for a particular run.
Then, the PBS scheduler executes strace which operates over
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Fig. 3. Energy consumption for first scenario.

the output of running PRIME in multiple compute nodes,using
psrun, for 1000 simulated seconds. After the job has been
executed, the following files are generated: one file with
the PRIME-generated simulation results, one XML file per
physical machine used (generated by psrun), and one file with
the output of strace. Next, we process the XML files using
psprocess to obtain many derived metrics, including TimeCPU

and number of L2 cache misses. Then, all this files are inputted
to parsing scripts which generate raw results. Lastly, we use
an spreadsheet to obtain the final results.

The energy consumption corresponding to the first scenario
is shown in Fig. 3. It was computed as the summation of
the energy consumed in each compute node. We performed 5
runs per number of compute nodes and averaged the results.
According to our results, the total energy consumed increases
linearly as more compute nodes are used; where the CPU
accounts for close to 90% of the total energy consumed (see
Fig. 6 for the energy distribution). To explain these results,
we plot the total CPU time used to compute the energy con-
sumption and the wall-cock time needed to run the simulation,
see Fig. 4. In there, it is shown that the total CPU time
increases linearly with the number of compute nodes used;
which explains the behavior of the total energy consumed.
In the ligth of Amdahl’s law, the wall-clock time depicted
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in Fig. 4 roughly corresponds to a 95% optimized code for
parallel execution. Although this level of parallelization may
be considered high, it has a tremendous impact in the wall-
clock time and CPU time achievable by a model and thus in the
energy consumed. It can be seen that for 16 compute nodes,
the energy consumed increases in close to 80%. According to
our results, for scenario one, the optimal setup corresponds to
4 compute nodes, where performance increases in 72.61% and
energy only increases in 5.85%.

Fig. 5 depicts the energy as the cross-traffic is increased. Its
corresponding total CPU time and wall-clock time are shown
in Fig. 7, and the number of packets transmitted between
computed nodes is shown if Fig. 8 . Again, it is observed a
linear behavior for the energy consumption. When 90% of the
traffic crosses compute node’s boundaries, the energy increases
in more than 120%. Here it can be easily noticed the huge
impact that traffic between compute nodes has in the energy
consumption of distributed simulations.

We think that the energy consumption can be decreased by
carefully partitioning the network model and mapping it to
compute nodes. Experiments are needed to asses the impact
of partitioning on the energy behavior. Also, it remains to
investigate how a model with a high-level of cross-traffic
behaves as the compute nodes are changed. Furthermore, we
want to explore how the energy consumption behaves in an
scenario where a the state of an application is logged to files at
regular intervals, which would increase significantly the energy
consumed in the disk.

V. CONCLUSIONS AND FUTURE WORK

In absence of cross-traffic PRIME achieves close to 95%
code optimization. Nevertheless, this has a tremendous impact
in the total CPU time and therefore in the energy consumption
of a network model. Although the performance of the simu-
lator increases, in terms of wall-clock time achieved when
more compute nodes are used, the energy consumed raises in
80% for 16 nodes. Also we show that the energy consumption
increases significantly when cross-traffic increases, leading to
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Fig. 6. Energy consumption distribution among resources in both scenarios.
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Fig. 8. Packets transmitted between compute nodes.

120% increase when 90% of the traffic crosses compute node’s
boundaries.

As a future work, we plan to extend our studies an explore
the partitions conducted on a network model to map it to
a distributed environment. After sufficient data is collected
regarding’s PRIME behavior, we plan to implement power-
awareness mechanisms in it.
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