FLORIDA INTERNATIONAL UNIVERSITY

School of Computing & Information Sciences

Measuring the Effort for Creating and Using Domain-Specific Models

Yali Wu PhD Candidate

18 October 2010

Outline

- Introduction
- Related Work
- Motivation
- Contributions
- Effort classification
- Effort Metrics
- Applying Metrics
- Conclusion

Introduction

- DSMLs lead to increased productivity through domain specific abstractions¹
- Industrial experiences have shown DSMLs to be 5-10 times more productive¹
- Is there a systematic approach of measuring the claimed benefits of using DSMLs?

1: www.dsmforum.org

Related Work

Current ways of measuring DSM productivity

- Qualitative results as anecdotal evidence
- Measuring reduced development time
- Measuring reduced implementation effort
- Software model metrics
 - Model heterogeneity created challenges
 - Initially focus on model size

Motivation

- How do we systematically measure the effort involved in domain specific modeling in a way that:
 - Take into concern the multiple dimensions of the DSM process?
 - Does not depend on specific DSMLs?

Contributions

- A classification of the effort involved in realizing applications using DSMLs
- A set of metrics for measuring each category of the involved effort
- A case study showing how these metrics could be applied to various DSMLs

Effort Classification

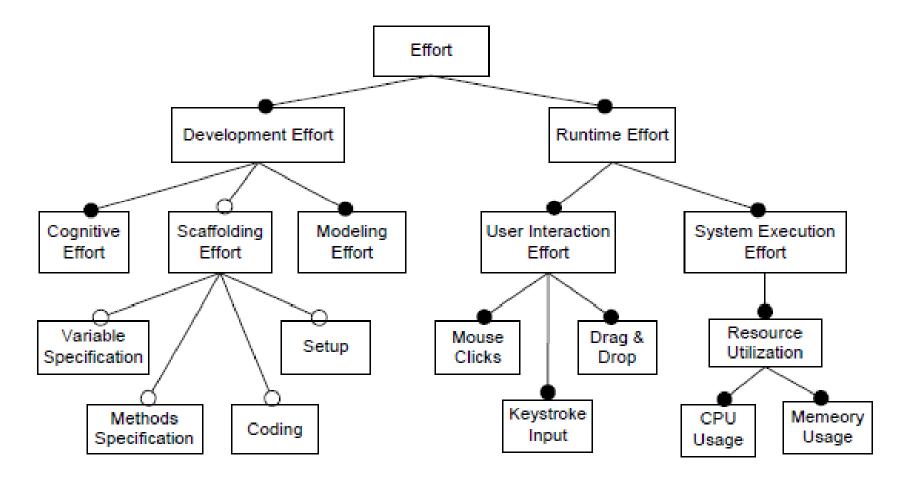


Figure 1: Feature Diagram to Classify Effort.

Development Effort

Effort Category	Effort Metrics	DC Metric	Associated Property
Modeling	Size Of Model	Effort required to	Conciseness
Effort	Control Flow <	McCabe Metric	
Cognitive Effort	Cognitive Weight	Cognitive Complexity	Understandability Comprehensiveness
	Closeness of Mapping	solutions to sability Analysis	
Scaffolding	Addt. LOC	Additional effort	Executablility
Effort	Addt. Methods	required to create	
sum = 0; for (i = 0; i < { sum += x[i] }	sum = sum + x(Z =SUM(A1A10)

Runtime Effort

Effort Category	Effort Metrics	Explanation	Measured Property
User	# Mouse Clicks	Effort required to	Runtime Ease-Of-Use
Interaction	# Keyboard Input	interact with the	
Effort	# Drag'n'Drop	execution interface	
System	CPU Utilization	Required system resource to map to	Runtime Resource
Execution Effort	Memory Utilization	executables at runtime	Efficiency

Applying Metrics to DSMLs

- Model the same heathcare scenario using three different DSMLs
 - Yet Another Workflow Modeling Language [W.M.P. van der Aalst, 2005]
 - Windows Workflow Foundation[Microsoft 2010]
 - Workflow Communication Modeling Language [Wu et al. 2010]
- Collect metrics for realizing the DSML model

Results

Table 3: Development Effort

Modeling/	SOM	CFC	CW	COMR
Cognitive	Top Level/Total			
YAWL	21/21	9	61	14/17
WF	77/77	20	22	13/64
WF-CML	7/54	2	3	7/4
Scaffolding	NALOC	NAV	NAM	NAC
YAWL	857	34	3	38
WF	1265	77	1	58
WF-CML	0	0	0	0

Results -cont

Table 4: Runtime Effort

User	NMC	NDD	NKI
Effort			
YAWL	3	0	9
WF	15	0	1
WF-CML	3	5	1
		CPUU	
System	MU		CPUU
System Effort	MU (Page File)	Threads	CPUU (milliseconds)
Effort	(Page File)	Threads	(milliseconds)

Discussions

- An initial attempt towards quantitative measurement of effort in using DSMLs
- Need more empirical studies to validate the metrics presented
 - Survey more DSMLs
 - Conduct extensive user studies for validation

Conclusion

- Investigate the mesurement of the effort to realize applications using DSMLs
- Present a classification of the effort and propose metrics for each category
- Multi-dimensional measurement provides a systematic and quantitative way of measuring the productivity of DSMLs

So which language requires less effort using the metrics presented?

