
Measuring the Effort for Creating and Using
Domain-Specific Models

Yali Wu, Frank Hernandez, Francisco Ortega
and Peter J. Clarke

School of Computing and Information Sciences
Florida International University

Miami, FL 33173, USA
{ywu001, fhern006, forte007, clarkep}@cs.fiu.edu

Robert France
Department of Computer Science

Colorado State University
Fort Collins, CO 80532, USA

france@cs.colostate.edu

ABSTRACT
The use of domain-specific modeling languages (DSMLs) re-
sults in higher productivity during the development process.
This is accomplished by raising the level of abstraction dur-
ing design and focusing on domain concepts rather than
low-level implementation details. Unlike other development
paradigms, little work has been done in determining and
measuring the claimed benefits of using DSMLs.

In this paper, we propose a new approach to determine the
effort involved in creating and using DSML models to de-
velop applications and to manage the behavior of applica-
tions at runtime. The approach involves a classification of
the effort involved, and definition of relevant metrics to mea-
sure the effort for each category. A case study is presented
that shows how we applied the proposed metrics during the
development and execution of an application using three dif-
ferent DSMLs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Languages, Experimentation

Keywords
Domain-specific modeling, metrics, effort

1. INTRODUCTION
During the last decade the use of domain-specific model-
ing languages (DSMLs), has grown in both academia and
industry. DSMLs are not only used to create development
models, but also used to produce runtime models that users
can use to manage runtime behavior. It is believed that
these languages lead to an increase in productivity, and
contribute to the production of models that are more flex-
ible and easier to use than models produced using general-
purpose modeling languages (GPMLs) [21]. As modeling
becomes more prevalent in the software development pro-
cess, a spectrum of DSMLs have emerged with varying de-
grees of “domain-specificity”, expressive power and execu-
tion support. Examples of such DSMLs include workflow
modeling languages. Business Process Execution Language
(BPEL) [12], Yet Another Workflow Language (YAWL) [22],
and Windows Workflow Foundation(WF) [5] are designed to

support a wide variety of business processes and appear to
be more “general purpose”. Meanwhile, languages such as
WebWorkflow [10] and Workflow Communication Modeling
Language (WF-CML) [23]1 are designed to support domain-
specific workflows in a more restricted set of applications.

While DSMLs provide a modern solution for the demands
of higher productivity, there is little work on determining
a systematic and quantitative approach of measuring the
claimed benefits of using DSMLs. To address this concern we
ask the following research question. How do we measure the
effort involved in creating and using DSML models during
development and at application runtime?

In this paper, we provide an initial answer to this ques-
tion using a two step approach. The first step is to classify
the types of effort involved in realizing applications using
DSMLs. The second step is to define relevant metrics for
measuring each category of the effort. Currently we consider
two types of effort: the development effort includes creating
models and additional scaffolding to make them executable,
and runtime effort includes using models at runtime to re-
alize or manage application behavior. Note that we do not
consider preliminary efforts with adopting the DSML, such
as learning the DSML and associated environments. Many
existing software metrics are related to the measurement
of software and model complexity. We use some of these
metrics, but generalize and adjust them accordingly for the
evaluation of DSML models. We aim to identify general
metrics that are domain and technology independent. The
result of this multi-dimensional measurement help domain
experts to make an informed decision about choosing the
most appropriate DSML for tackling their problem.

To determine the effectiveness of our approach we performed
a case study and applied the metrics during the creation and
execution of an application using a domain-specific workflow
language: WF-CML [23] and two general-purpose workflow
languages: YAWL [22] and WF [5]. The contribution of this
paper is as follows:

• A classification of the effort involved in realizing ap-
plications using graphical DSMLs
• A set of metrics for measuring each category of the

involved effort
• A case study showing how these metrics could be used

91http://www.cis.fiu.edu/cml/

in evaluating the claimed benefits of DSMLs

The outline of this paper is as follows. Section 2 introduces
works on DSM and model metrics and Section 3 discusses
the related work. Section 4 introduces the classification of
effort and associated metrics. Section 5 presents the case
study and we conclude in Section 6.

2. BACKGROUND
In this section we provide the background on domain-specific
modeling and metrics for model measurements.

2.1 Domain-Specific Modeling (DSM)
Domain-specific modeling (DSM) is a development method-
ology that raises the level of abstraction beyond coding by
specifying solutions directly using domain concepts[7]. Ap-
plications are then generated from these high-level speci-
fications. DSM languages, therefore, promise productivity
gains by continuously increasing the semantic distance [8]
from implementation-level artifacts.

As opposed to GPMLs such as UML[18], the key charac-
teristic of a DSML is its focused expressive power in one
domain. This domain can be an application domain (e.g., in-
surance, healthcare), a technical domain (e.g., data, business
logic, workflow), or an organization domain (e.g., sales, cus-
tomer service). One way is to view “Domain” as a set/family
of software systems exhibiting similar functionality, with
the family’s functionality encoded as domain knowledge.
Graphical DSMLs, with their rich visual representation can
further improve the modeling experience for the user. In
graphical DSMLs, a set of graphic modeling primitives forms
the lexical layer and the abstract syntax is typically defined
in terms of a meta-model. In this paper, we mainly focus on
the investigation of graphical DSMLs, given that they are
becoming the trend of future DSMLs.

2.2 Model Metrics
In software engineering, metrics on program complexity have
been extensively investigated for effective estimation and
quality management of software development. One of the
most commonly used measures of program complexity is the
source lines of code (SLOC) metric. Another popular metric
is McCabe’s cyclomatic number for measuring the number of
linearly-independent paths through a program by analyzing
its control flow graph[13]. Other metrics include Halstead’s
programing effort [13], and the fan-in/fan-out metrics[13].

However, in model-driven software engineering, program met-
rics like SLOC does not readily apply to modeling languages
such as UML. Software models are heterogeneous in nature
with varying levels of abstraction and can be created using
different modeling styles[4]. This heterogeneity has created
many challenges in defining the metrics of a software model
that allows for effective baselining and comparison of model
concepts. The Model Size Workshop [4] represents a start-
ing endeavor in developing metrics for use in the MODELS
community. Initial work has focused on model size.

3. RELATED WORK
The benefits of bringing domain specific abstractions in lan-
guage design have been observed both in academia and in-

dustry. They are supported by quantitative results such as
those reported by Batory et al. [2], and more recently by
Leff et al. [16]. The quantitative validation of DSML, how-
ever, both in general as well as in particular, has been a
hard and important open problem. Most DSML designers
provide anecdotal evidence for the claimed benefits based
on a handful of usage scenarios for the language[11]. Ques-
tionnaires are used to collect the known success factors of
the use of DSML, such as productivity gains and improved
usability from developers’ opinions and feedbacks[14].

Some language designers have used quantitative measures to
evaluate productivity gains via decreased development time
[1, 11, 14, 19]. Karna et al. in [14] proposed the evaluation
of DSM solutions via controlled laboratory studies and re-
ported on 750% in developer productivity based on measur-
ing the development time. Baker et al. [1] described a case
study in which source code and test cases are generated from
DSML models, the productivity gains were also based on a
reduction in development time in terms of equivalent source
lines of code. Safa in [19] used the number of man-days
to calculate a cost/benefit ratio to evaluate domain-specific
notations. Kieburtz et al. in [15] collected the task effort
hours in the DSML as well as a template-based approach
and used the radio of the two means as indications of the
productivity improvement of DSML.

Other researches have reported reduced implementation ef-
fort to justify the claimed benefit of DSML. Wienands in [25]
applied a DSML in the domain of elevator controllers and
reported less coding effort for developing the same elevator
controller: from 508 lines of code to 5 states, 15 transitions,
and 29 lines of TSL script. White et al. [24] reported on re-
duced development effort from several thousand lines of Java
code to simple J2SEML model manipulations that required
only six steps. Yet in both cases, the implementation effort
of the DSML and manual approach is not fully quantified
and compared, only focusing on artifact size.

The above approaches usually evaluate effort from one di-
mension and do not cover a complete and multi-dimension
view of all the effort involved during the creation and ex-
ecution of applications using DSMLs. The increasing need
for a systematic and multi-dimensional measurement of the
effort associated with using DSMLs motivates our work.

4. METRICS
Based on our own experiences in designing and using DSML,
as well as an extensive literature review of DSMLs, we iden-
tify and classify the effort associated with using DSMLs by
breaking it down into categories. Figure 1 uses a feature
diagram to present an initial pass at such a classification.
The overall effort involves both the development effort for
creating an application and runtime effort for executing the
application. Development Effort is decomposed into Model-
ing Effort, Cognitive Effort and Scaffolding Effort. Modeling
effort is the effort required to create the model, cognitive ef-
fort the effort to form the mental solutions to a problem,
and the scaffolding effort the effort to complete the solution
thereby making it executable. Runtime Effort is categorized
into User Interaction Effort and System Execution Effort,
denoting the required user interaction with the system, as
well as the system resource utilization in realizing the ap-

Effort

Development Effort Runtime Effort

Modeling

Effort

Cognitive

Effort

Scaffolding

Effort

User Interaction

Effort

System Execution

Effort

Coding

Variable

Specification

Methods

Specification

Mouse

Clicks

Drag &

Drop
Setup

Resource

Utilization

Keystroke

Input
CPU

Usage

Memeory

Usage

Figure 1: Feature Diagram to Classify Effort.

plication. Note that we do not claim this classification to
be complete. Preliminary tasks such as learning effort, and
binding effort (e.g. during code generation to customize
coding components) that are technology and domain depen-
dent are left out in this paper.

4.1 Development Effort
The details for the development effort are provided in this
section using the structure provided in Figure 1. The devel-
opment effort includes: modeling effort, cognitive effort and
scaffolding effort.

4.1.1 Modeling Effort
In evaluating the modeling effort for developing DSML mod-
els we use the following graph-based metrics:

Size of model (SOM): defined as the“number of model el-
ements” in a DSML model. It is analogous to SLOC used to
represent program size. Various metrics have been proposed
to measure the size of models, such as number of nodes,
number of edges, number of attributes[4]. A generalized def-
inition of SOM could be a weighted sum of each potential
metric, with the weight validated by empirical studies:

SOM =

n∑
i=0

wi ×mi (1)

where mi denotes a single measure of the model size, like
number of nodes or edges, and wi represents its weight sat-
isfying

∑n
i=0 wi=1. A simple form of SOM is given below

where ‖N‖ is the number of nodes:

SOM = ‖N‖ (2)

Control Flow Complexity of Model (CFC): defined
as the number of possible control flows in a DSML model
(assuming it has explicit control structures). Cardoso [3]
extended McCabe’s cyclomatic number to measure the CFC
of process models. He proposed that the CFC metric equates
the number of decisions in the process flow. Every split
in the model adds to the number of possible decisions as
follows: CFCand - AND-split adds 1; CFCxor - XOR-split
adds n; and CFCor - OR-split adds 2n− 1. The CFC could
be applied in the measurement of DSML models that have
explicit control structures. The higher the CFC, the more
complex the structure of the DSML model.

CFC(m) =
∑
i∈xor

CFCi +
∑

j∈and

CFCj +
∑
k∈or

CFCk (3)

Table 1: Cognitive Weight for BCSs defined in [20]

Category Basic Control Structure Cognitive Weight

Sequence Sequence 1
Branch If-then-else 2

Case 3
Iteration For-do 3

Repeat-until 3
While-do 3

Embedded Function Call 2
Component Recursion 3
Concurrency Parallel 4

Interrupt 4

When computing the SOM and CFC for a given DSML
model it may be necessary to flatten it if there are nested
components.

4.1.2 Cognitive Effort
To determine the cognitive effort involved when developing
DSML models, we use techniques from the work on soft-
ware complexity metrics [20] and usability analysis of visual
programing environments [9] .

Cognitive Weight(CW): measures the psychological com-
plexity of a model in terms of the relative ease to understand
and modify the model. Shao et al. [20] presents a metric
to measure the difficulty or relative time and effort for com-
prehending a given piece of software modeled by a number
of basic control structures (BCSs). The CWs for each BCS,
based on empirical studies, are shown in Table 1. The CW of
a software component (described as the component’s cogni-
tive functional size (CFS)) is defined as the sum of cognitive
weights of its q linear blocks composed in individual BCSs,
with each block consisting of m layers of nesting BCSs, and
each layer with n linear BCSs.

CW (m) =

q∑
j=0

m∏
k=0

n∑
i=0

CWcs(j, k, i) (4)

In general to determine the CW of a DSML model we use
Equation (4). Note that if the model does not have any
nested structures then the CW is the sum of the CWs of
all of its control structures. The higher the CW, the more
difficulty it is to comprehend the model.

Closeness of Mapping Ratio (COMR): measures the
effort needed to mentally construct a solution to the prob-
lem by translating the users’ high-level goals into language
primitives. Green [9] used the number of primitives and
amount of syntax in different languages to infer the poten-
tial distance between the problem world and the program
world. The more unusual primitives and lexical clutter, the
more effort the developer has to put in arranging the compo-
nents in a hard-to-remember structure with finicky syntax
rules[9]. As an initial attempt we use COMR as the ratio of
the number of problem-level language primitives (that are
related to the user’s inherent goals) divided by the number
of solution-level primitives (that are “structural or semantic
glue” and do not have counterparts in the problem domain).
COMR approximates the closeness of the mapping from the
problem domain to the solution domain.

4.1.3 Scaffolding Effort

In evaluating the scaffolding effort in using DSMLs for cre-
ating applications, we introduced the following metrics:

Number of Additional LOC (NALOC): number of ad-
ditional lines of code needed to generate a complete exe-
cutable from a DSML model. It measures the additional
coding effort required to realize applications using DMSLs.

Number of Additional Variables (NAV): number of
additional variables be defined. In languages like YAWL[22]
and BPEL[12], additional variables have to be defined that
capture the data flow and storage needs of processes, con-
tributing to the overall effort of adopting the DSML.

Number of Additional Methods (NAM): number of
additional methods defined for completing the behavioral
specification of the DSML model.

Number of Additional Components (NAC): number
of external dependent software components that the devel-
oper has to manage or configure, such as additional database
back-end support, servlet containers for hosting web ser-
vices, required libraries, or DLLs that have to be imported
or configured. It measures additional infrastructural sup-
port required for realizing the DSML model.

4.2 Runtime Effort
To determine the runtime effort for using DSML models at
runtime, we consider two forms of effort: the user’s effort
in interacting with the DSML execution interface, and the
system effort in terms of resource utilization. We proposed
the following metrics:

Number of Mouse Clicks (NMC): number of mouse
clicks to realize a user scenario.

Number of Drag-and-Drops (NDD): number of drag
and drop operations to realize a user scenario.

Number of Keystroke Inputs (NKI): number of keystroke
inputs required from the user to realize a user scenario.

Memory Utilization (MU): amount of memory required
by the underlying platform to realize the user scenario.

CPU Utilization (CPUU): the amount of CPU resources
required by the underlying platform to realize the user sce-
nario. We use the CPU time allocated to the related pro-
cesses, and the thread count of the processes to infer the
CPU utilization.

5. CASE STUDY
In this section we describe the case study that involved the
use of three DSMLs to realize a healthcare scenario. The
proposed metrics were applied and the results presented.

5.1 Preliminaries
DSMLs: Three DSMLs were used during the study and
were selected based on their relative specificity with respect
to modeling communication-intensive scenarios. Two of the
DSMLs, Yet Another Workflow Language (YAWL) [22] and
Window Workflow Foundation (WF) [5], are fairly known.

The third DSML Workflow Communication Modeling Lan-
guage (WF-CML) [23] was recently developed specifically
for realizing user-centric communication applications.

YAWL is a workflow language based on a rigorous analysis
of existing workflow management systems and workflow lan-
guages [22]. YAWL is supported by an extensible software
system including an execution engine, a graphical editor,
and a worklist handler. The YAWL system is extensible
by allowing external applications to interconnect with the
workflow engine using a service-oriented approach.

WF provides a programming model, in-process workflow en-
gine and rehostable designer to implement long-running pro-
cesses as workflows within .NET applications [5]. In WF,
workflows are defined in XAML, but are usually edited us-
ing a graphical designer in Visual Studio. To execute the
workflows, a WF Runtime is provided in the .NET Frame-
work that includes common facilities for running and manag-
ing the workflows, providing feedback on execution progress,
and hosting individual workflow instances.

WF-CML is a DSML that automates the dynamic coordi-
nation of user-centric communication services (UCCSs) in a
collaborative environment [23]. WF-CML defines communi-
cation-specific abstractions of workflow constructs found in
many general-purpose workflow languages. WF-CML mod-
els are realized by the Communication Virtual Machine (CVM)
[6], a runtime environment for supporting automatic coor-
dination of UCCSs. Unlike most DSMLs, WF-CML models
are executed directly without first being converted into an
executable in an underlying language.

Healthcare Scenario: The scenario describes a series of
communication activities that take place during patient dis-
charge at Miami Children’s Hospital (MCH). The actors in
the scenario include Discharge Physician (DP), Senior Clin-
ician (SC), Primary Care Physician (PCP), Nurse Practi-
tioner (NP) and Attending Physician (AP).

On the day of discharge, Dr. Burke (DP) establishes an
audio communication with Dr. Monteiro (SC) to discuss
the discharge of baby Jane. During the conversation, Dr.
Burke sends Jane’s discharge package to Dr. Monteiro for
validation. The discharge package consists of a summary of
patient’s condition (text file); x-Ray of the patient’s heart
(non-stream file); and an echocardiogram (echo) of the pa-
tient’s heart (video clip). After the package is sent, Dr.
Burke contacts Dr. Sanchez (PCP) to join the conversation.
After Dr. Monteiro validates Jane’s discharge package, he
sends it back to Dr. Burke. If Dr. Burke received the
package within 24 hours and it’s validated, he then sends it
to Nurse Smith (NP) and Dr. Wang (AP). Otherwise, Dr.
Burke sends out an interim discharge note (text file) to the
AP. Meanwhile, Dr. Burke continues his conference with
Drs. Monteiro and Sanchez. 2

5.2 Experiment
Design of Experiments: The purpose of the experiment
is to perform a comparative study that involves modeling
and executing a scenario using three DSMLs and evaluate
the effort involved using the proposed metrics. The detailed

Table 2: Experimental Setup and Procedure
YAWL WF WF-CML

System 1.YAWL system (editor, engine) 1.NET Framework 1.CVM system

Setup 2.Servlet Container (Apache Tomcat) 2.Skype4COM (Skype API for C#) 2.Skype4Java (Skype API for Java)

3.Database back-end (PostgreSQL)

4. Skype4Java (Skype API for Java)

Development 1.Create models in YAWL editor 1.Create models in WF Designer 1.Create models in WF-CML editor

Process 2.Develop and deploy web services that in-

voke Skype API calls

2.Implement customized workflow

activities that realize Skype actions

2.Specify communication services

nodes using CML

3.Register deployed service in YAWL engine 3.Develop the workflow client to in- 3.Specify trigger events for advanc-

4.Bind communication tasks in the YAWL

specification to registered web services

teract with the workflow engine and

Skype

ing communication nodes

5.Define task variables and net variables and

mapping between input/output parameters

to these variables

by hosting the workflow and connect-

ing to the Skype proxy

procedure of the experiment is shown in Table 2. The table
is divided into two rows, the first row describes the system
setup, and the second row the steps to develop the exe-
cutable for the DSML model.

Data Collection: Collecting the development effort data
involved obtaining the values for SOM, CFC, and CW which
were straightforward. The values for COMR required the
classification of language primitives into problem-level and
solution-level constructs. Measuring the user effort required
counting the number of mouse clicks, drag-and-drop opera-
tions and user inputs during the execution of the scenario.
The data for system effort was obtained by: (1) instru-
mented the code with time stamps to measure the elapsed
execution time for the workflow engine to interpret the work-
flow specification, and (2) using the task manager to obtain
the number of threads allocated to the workflow process.
We use the number of page files allocated for the execution
engine as an approximate indication of memory utilization.

5.3 Results

Figure 2: Modeling Environment for WF-CML

Models for the scenario using the three DSMLs, WF-CML,
YAWL, and WF were created during the study. Due to the
space limitation we are only able to show the screen shot
for the WF-CML model, shown in Figure 2. The screen

Table 3: Development Effort
Modeling/ SOM CFC CW COMR

Cognitive Top Level/Total

YAWL 21/21 9 61 14/17

WF 77/77 20 22 13/64

WF-CML 7/54 2 3 7/4

Scaffolding NALOC NAV NAM NAC

YAWL 857 34 3 38

WF 1265 77 1 58

WF-CML 0 0 0 0

Table 4: Runtime Effort

User NMC NDD NKI

Effort

YAWL 3 0 9

WF 15 0 1

WF-CML 3 5 1

System MU CPUU

Effort (Page File) Threads (milliseconds)

YAWL 374 161 1909.8

WF 128 49 303

WF-CML 184 87 909.3

shots of the other models can be seen on the project’s web
page2. Both YAWL and WF require the exact sequence of
atomic communication tasks to be specified at design time.
In WF-CML the basic nodes of communication processes are
modeled using declarative CML models, which specify high
level communication needs as opposed to detailed steps of
communication. The collected metrics for the three tech-
niques are shown in Tables 3 and 4. Table 3 presents the
comparison of YAWL, WF and WF-CML in terms of the
manual effort, cognitive effort, and scaffolding effort. Table
4 illustrates the runtime metrics in terms of user effort and
system execution effort.

5.4 Discussion
The result of our experiments provides evidence on potential
productivity gains of WF-CML with less development effort.
However, there is a trade off between ease-of-use and runtime
system resource utilization, as demonstrated by more mem-
ory and CPU usage of WF-CML compared to WF. YAWL

92http://www.cis.fiu.edu/cml/

has the most resource utilization due to its heavy weight
workflow engine that supports full-blown workflow solutions.

Since our work is just an initial attempt towards quantita-
tive measurement of effort in using DSMLs during applica-
tion development. There needs to be more empirical studies
to validate the metrics presented in the paper. Also there
are several limitations with our study as described below:
(1) Only three DSMLs are investigated in this study. There
needs to be a more comprehensive review of different cat-
egories of DSMLs to consolidate the classification of effort
presented in the paper. (2) Metrics like CFC only measure
a class of DSMLs that have explicit flow structures, such
as process modeling languages (e.g., BPEL [12]) and [17].
For declarative DSMLs, CFC would not be appropriate to
measure the structural complexity. (3) The measurement of
the cognitive effort in using DSMLs lack empirical evidence.
More empirical evaluation is required to determine the im-
pact of the cognitive effort in creating DSML models. The
long term vision of this research includes the estimation of a
single effort value for each DSML by doing a weighted sum
of each of the potential metrics. This effort value will be
used for determining the cost/benefit ratio of the DSML.

6. CONCLUSION
In this paper, we investigated the measurement of the effort
to realize applications using DSMLs. We present a classifi-
cation of the effort, and propose metrics for each perspective
of the effort. Many of the metrics come from program and
model complexity research. This multi-dimensional mea-
surement approach provides a systematic and quantitative
way of measuring the claimed benefits of DSMLs, which is
addressed in a limited fashion in the literature. The validity
of our metrics needs further validation.

7. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grant HRD-0833093, CCF-1018711, CCF-
0854988 and US Dept of Ed. grant P200A070543.

8. REFERENCES
[1] P. Baker, S. Loh, and F. Weil. Model-driven

engineering in a large industrial context - motorola
case study. In MoDELS, pages 476–491, 2005.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools
for implementing domain-specific languages. In In
Proceedings Fifth International Conference on
Software Reuse, pages 143–153. IEEE, June 1998.

[3] J. Cardoso. How to measure the control-flow
complexity of web processes and workflows. In The
Workflow Handbook, pages 199–212, 2005.

[4] M. Chaudron and C. F. Lange. Second international
workshop on model size metrics. In Models in Software
Engineering: Workshops and Symposia at MoDELS
2007, pages 89–92, Berlin, Heidelberg, 2008.
Springer-Verlag.

[5] M. Corporation. Windows workflow foundation, 2010.

[6] Y. Deng, S. M. Sadjadi, P. J. Clarke, V. Hristidis,
R. Rangaswami, and Y. Wang. Cvm - a
communication virtual machine. JSS,
81(10):1640–1662, 2008.

[7] D. Forum. Domain specific modeling, 2010.

[8] G. C. Gannod and B. H. C. Cheng. A framework for
classifying and comparing software reverse engineering
and design recovery techniques, 1999.

[9] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework. JOURNAL OF VISUAL
LANGUAGES AND COMPUTING, 7:131–174, 1996.

[10] Z. Hemel, R. Verhaaf, and E. Visser. Webworkflow:
An object-oriented workflow modeling language for
web applications. In MODELS ’08, pages 113–127,
Berlin, Heidelberg, 2008. Springer-Verlag.

[11] F. Hermans, M. Pinzger, and A. Deursen.
Domain-specific languages in practice: A user study
on the success factors. In MODELS ’09, pages
423–437, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] IBM. BPEL4WS, Business Process Execution
Language for Web Services Version 1.1, 2003.

[13] D. Kafura. A survey of software metrics. In ACM ’85:
Proceedings of the 1985 ACM annual conference on
The range of computing : mid-80’s perspective, pages
502–506, New York, NY, USA, 1985. ACM.

[14] J. Karna, S. Kelly, and J. pekka Tolvanen. Evaluating
the use of domain-specific modeling in practice. In
Proceedings of DSM09, 2009.

[15] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook,
A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,
and L. Walton. A software engineering experiment in
software component generation. In ICSE ’96:
Proceedings of the 18th international conference on
Software engineering, pages 542–552, Washington,
DC, USA, 1996. IEEE Computer Society.

[16] A. Leff and J. T. Rayfield. Webrb: evaluating a visual
domain-specific language for building relational
web-applications. SIGPLAN Not., 42(10):281–300,
2007.

[17] C. U. Network Working Group. Call Processing
Language (CPL), 2004.

[18] Object Management Group. Unified modeling
language: Superstructure, version 2, February 2009.

[19] L. Safa. The making of user-interface designer a
proprietary dsm tool, 2007.

[20] J. Shao and Y. Wang. A new measure of software
complexity based on cognitive weights. IEEE
Canadian Journal of Electrical and Computer
Engineering, 83:69–74, 2003.

[21] V. Sugumaran and V. C. Storey. The role of domain
ontologies in database design: An ontology
management and conceptual modeling environment.
ACM Trans. Database Syst., 31(3):1064–1094, 2006.

[22] W. van der Aalst and A. H. M. T. Hofstede. Yawl:
Yet another workflow language. Information Systems,
30:245–275, 2003.

[23] WF-CML Development Team. Workflow
communication modeling language, 2010.

[24] J. White. Simplifying autonomic enterprise java bean
applications via model-driven development: a case
study. In SoSyM, pages 601–615, 2005.

[25] C. Wienands and M. Golm. Anatomy of a visual
domain-specific language project in an industrial
context. In MODELS ’09, pages 453–467, Berlin,
Heidelberg, 2009. Springer-Verlag.

