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Abstract

Ontology-based systems have been used to facilitate
teaching and learning. Ontologies have proven to be a very
useful artifacts to represent a domain and as an important
component in specific applications for giving semantics. In
logic circuits domain, ontologies have been employed for
teaching logic gates (xor, or, not, nand), and this approach
has been deemed as an effective way for capturing and us-
ing the knowledge of the logic gates on assembling circuit
systems. This knowledge can be reused by new students
gaining time and reducing circuits manufacturing costs. In
addittion, the correct assembling among logic gates and the
right output of a circuit can be validated by using semantic
techniques. In this paper, we describe a semantic web tech-
nique based on a core ontology, a reasoner and SPARQL
queries for teaching and learning circuits based on logic
gates. We use an example and a prototype to explain our
approach.

1. Introduction

New scenarios for self-learning of logic circuits are
neccesary during the design phase. These scenearios have
to ensure the funcionality expected by the students and sim-
ulating the behavior of their circuits. These scenarios help
them to prevent economic losses. Another important fac-
tor to consider is the circuit models reusability [19]. The
time for developing a complex circuit using a semantic cir-
cuit repository decrease the cost of the project and reduce

Carolina Medina-Ramirez
Department of Electrical Engineering
Universidad Auténoma Metropolitana, México
Av San Rafael Atlixco 186, Col.Vicentina
09340 Distrito Federal, México
cmed @xanum.uam.mx

S. Masoud Sadjadi

School of Computing and Information Sciences

Florida International University (FIU)
11200 SW 8th St, Miami, USA
sadjadi @cs.fiu.edu

the learning curve of new students in the project. In this
context, semantic technologies seem relevant. We can use
Ontologies[32] in order to represent a circuit based on logic
gates (and, or, not, etc.) and to verify the circuit design.
Each connection of the circuit can be validated by means
of ontology properties [32] and reasoners [27]. The new
knowledge obtained for each part of the circuit assembled,
can be stored in an ontology [21] written in OWL-DL [39]
by means of metadata (is stored as an XML file), in this way
the knowledge is capitalized [30][23]. This knowledge can
be used by new developers or new members of the project
to reduce manufacture time. In consequence, the company
decreases costs. The circuits behavoir can be modelled by
SPARQL queries. In fact, a complex circuit could be repre-
sented by one SPARQL query.

The rest of the paper is structured as follows. In Section
2 we give the related work for teaching logic circuits based
on ontologies and SPARQL queries. In Section 3 we briefly
explain concepts about Semantic Web Techniques, Ontolo-
gies, Core Ontologies, Reasoners and SPARQL queries.
Section 4 we describe our approach for teaching of logic
circuits in a Semantic Web Framework. In Section 5 we
show the feasibility of our technique by describing an ex-
ample and a prototype called Itzamna. Finally, in Section 6
we conclude our work.

2. Related work

The ontologies based on logic gates for teaching is
mostly represented by work of Robal et al.[29] who wrote
an ontology-based intelligent learning object for teaching



the basics of digital logic. Robal’s ontology is oriented for
teaching the basics of digital logic, our ontology is made for
validating the right connections among logic gates, for veri-
fying the right output of the logic circuit built, and Students
can create new circuits reusing the ontology. Another work
by Sosnovsky and Gavrilova [33] was made by teaching and
learning C programming based on the designed ontology.

3. Semantic Web Techniques

The Semantic Web [35][3][24] is the Tim Berners-Lee
vision for representing information in the World Wide Web.
He defines it as a web of data that can be processed directly
and indirectly by machines [35]. This is a collection of
standards, a set of tools [7], and a community that shares
data. Semantic Technology is a concept in computer sci-
ence which goal is to give semantics to data[10]. Supported
by semantic tools [31] that provides semantic information
about the meaning of words (RDF, SPARQL, OWL, and
SKOS). Semantic Web Techniques are methods and tech-
niques based on semantic tools which allow us to manipu-
late information too.

3.1 Ontologies

Ontologies are the key for Semantic Web goals. An On-
tology [11][13][35][31][32] is defined by Gruber as a speci-
fication of a conceptualization [11] which defines the terms
used to describe and represent a domain of knowledge, also
is the model (set of concepts) for the meaning of those
terms, thus defines the vocabulary and the meaning of that
vocabulary, are used by students and applications that need
to share domain information. More specifically, an ontology
is a formal representation of knowledge with semantic con-
tent which allows us to obtain information. Such informa-
tion can be retrieved by performing SPARQL queries [28]
or using a rule-based inference engine [34]. In our case, the
logic circuits is the domain of knowledge.

3.1.1 Core Ontologies

In philosophy, a Core Ontology [6] is a basic and minimal
ontology consisting only of the minimal concepts required
to understand the other concepts. It must be based on a
core glossary that humans can understand. A Core Ontol-
ogy is a complete and extensible ontology that expresses
the basic concepts in a certain domain of knowledge. In
this work we have built a core ontology which consists of
a logic gates glossary which students of circuits understand
well. We consider that these kind of ontologies support the
reuse. Building these kind of ontologies do not require a
complex methodology [9] to follow it, in fact, following
the Ontology Development 101: A Guide to Creating Your

First Ontology [8] or An eXtreme method for developing
lightweight ontologies [16] are enough.

3.2 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF) [22] which is a W3C Recommenda-
tion [38]. RDF Schema (RDFS) is extending RDF vocab-
ulary for describing taxonomies of classes and properties.
We use Web Ontology Language OWL [39] which extends
RDF and RDFS. Its primary aim is to bring the expressive
and reasoning power of description logic to the semantic
web. In our learning scenario, Querying language is nec-
essary to retrieve information [17] and verifying the correct
output of the circuits. At this moment, we only have decided
to explore semantic queries in SPARQL instead of applying
another action such as: production rules [34].

3.3 Reasoners

A reasoner [27] is a program which its main task is
checking the ontology consistency. It verifies if the ontol-
ogy contains contradictory facts, axioms or wrong proper-
ties among concepts. Besides, new knowledge can be in-
ferred after applying it. The most popular reasoners are
Cerebra [25], FACT++ [37], KAON2 [26], Pellet [27],
Racer [14], Ontobroker [5], OWLIM [20]. Pellet is an open-
source Java based OWL-DL reasoner. In our verification
process we use Pellet for checking the consistency of the
logic circuit ontology and classify the taxonomy. We select
the Pellet reasoner, because it gives an explanation when an
inconsistency was detected.

4 Teaching Scenario in a Semantic Web
Framework

Itzamna' is a factory framework of circuit models based
on semantic techniques which focuses on maximising the
level of reuse using logic circuits. One of the most impor-
tant features of this framework is enabling knowledge reuse
in logic circuits modelling using Semantic web techniques
[4].

The aim of this framework is to allow to learn about logic
circuits using a friendly interface and a graphical desing.
Our main contributions are: we define a framework that
allows us to reuse logic circuit for building new circuits.
Second, our approach supports the validation of the out-
put values obtained from the logic circuit during the design
phase and Finally, our framework supports the learning and
teaching of circuits based on logic gates. A prototype of the

Itzamna is the name of an upper god of wisdom in Yucatec Maya
mythology
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Figure 1. Semantic Web Techniques for Teaching Logic Circuits

framework involves a visual editor. The tool makes use of
the library Flamingo and the Ribbon component [18] imple-
mented in Java. We have used Jena API [11] and Java lan-
guage [36] for programming that and NetBeans IDE 7.0 [2].
Each logic gate is represented in a graphic way and it can be
assembled with another, see Figure 2. This is the first task
to do by the students during his learnig process. Second,
they have to introduce the information about the name and
bit values of the circuits in the ontology. We have called this
Data Semantization process, see Figure 1. This informa-
tion also can be introduced by means of a text file (the op-
tion Create Instances Vocabulary). Itzamna transforms the
user vocabulary (logic gates that the user needs for building
his circuit) from a text file into an ontology instances. The
third step will be to check the ontology consistency part of
the Semantic Verification, see Figure 3. Semantic verifica-
tion is the process which uses a core Ontology and Seman-
tic Technologies (SPARQL queries) to guarantee the correct
construction of logic circuits with specific connections and
outputs. The semantics of assembling the logic gates are
described with object properties. An important aspect of
the logic gates to consider during the assembling is the In-
put and Output connections. A logic gate has one output,
but different number of input connections. The logic gate
connections are based on the output of one of them using as
input in the others.

4.1 A Core Ontology for Logic Circuits

We propose a core ontology called OntoCoreCircuit
which has the minimum concepts (logic gates) neccesary
to represent the 1-bit Comparator circuit. And, Or, Xor,
Not, Nand, Nor and Xnor are universal gates and they do
not require to be validate by experts. Besides, we only
need 3 or 5 competency questions to validate the ontology
[12]. A Logic Gates Ontology was created for capturing
and verifying information about the new logic circuit model
during the graphical design. OntoCoreCircuit Ontology is
built by means of classes using n3 notation and relations
among concepts. This is used by the ontology, because is
a valid RDFS and OWL-DL notation. The Ontology use
RDFS and OWL-DL language [39][15][40]. They are fun-
damentally based on descriptive logic languages. This On-
tology consists of 3 Classes (Circuit,Gate and Bits ), 35 In-
stances ( :and, :or, :not, etc.), 10 Object properties (:isType-
Gate, :andOutput, :haslnputl, etc.) and 1 Datatype prop-
erty (-hasName).

S Building a 1-bit Comparator in Itzamna
Framework

A 1-bit comparator is a hardware electronic device that
receives two bits (A and B) as input and determines whether
one bit is greater than, less than and equal to the other bit.
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Figure 2. 1-bit Comparator circuit diagram and SPARQL queries

Table 1. 1-Bit Comparator Truth Table based
on Instances

A|B| AB | A<B | A=B | A>B
:0]:01:00 :0 1 :0
0 :1]:0.1 1 0 :0
:1]:0|:1.0 :0 0 .1
1 11]:1.1 :0 1 :0

This circuit has 2 bit binary inputs (A, B) and three sin-
gle bit binary outputs (A > B, A=B, A < B). This kind of
circuit can be extended for 2,3,...,n-bits comparator circuit.
For that reason, we have chosen this circuit for learning.
The truth table using the instance notation is showed in Ta-
ble 1. This circuit is built with 5 logic gates (2 not, 2 and,
1 xnor), as showed in Figure 2. The logic circuit model
used for describe a 1-bit Comparator circuit was made in
Itzamna Framework using its graphical interface of logic
gates (the text in the image was adding for clarifying the cir-
cuit information), and is shown in figure 2. The input model
(logic gates) is created by the user who selects classes and
relation among concepts and he creates the logic gates in-

stances (candl, :and2, :xnorl, :notl and :not2). In this case
the input model only has 5 logic gates and we can create
its instances and relations among them using the Itzamna’s
menus (create instances vocabulary).

5.1 Assembling Verfication using The Pellet Rea-
soner

The Core Ontology written in OWL-DL, allow us to de-
fine restrictions which Pellet can verify during the consis-
tency checking process. This action can be performed by
menues in Itzamna framework, see Figure 3. For instance,
the following code establishes that the and gate has only 1
output, because a FunctionalProperty is defined for :and-
Output Object Property.

:xnorOutput a owl:0ObjectProperty ;
rdfs:domain :Gate ;
rdfs:range :Bits ;
rdf:type owl:FunctionalProperty

An interesting property of the ontology used in this work
is a blank node. It is a node in an RDF graph representing
a resource without URI or literal. We used it as variable.
If we put the same blank node, the result for this node has
to be the same. In our example below, _:icl, _:c2 and _:c3



are blank nodes (working as variables). The example shows
how to :xorl and :and2 gates are forced to have the same
input (_:c2).

# :xnorl is a member of xnor gates

:xnorl :isTypeGate _:cl

# :xnorl requires 2 input values
_:cl thasInput2 _:c2

# :notl is a member of not gates
:notl :isTypeGate _:c3

# :notl requires only 1 input value
_:c3 :hasInputl _:c2

A difference with Logic Programming Paradigm, we can
check our types using ontologies. In particular when we
create a new logic gate, for example :and2, we do not have
to introduce all input and output values. In this case, it
is only neccesary to establish the property relation :and?2
:isTypeGate :and . Besides, the ontology allow us to see
circuits and gates saving in the ontology at the same time
because the Gate class is a subclass of Circuit.

:Circuit a owl:Class
:Gate rdfs:subClassOf :Circuit

:isTypeGate a owl:0ObjectProperty ;
rdfs:domain :Gate ;
rdfs:range :Gate

The disjointWith property allow to verify restrictions in
the input model. For example a logic gate is not a bit, these
two classes are different. Defining disjoint classes is also
possible [1].

:Gate rdfs:subClassOf :Thing ;
owl:disjointWith :Bits

All instances created, properties (object and datatype)
established among instances, and blank nodes in the On-
tology are checked by the reasoner Pellet during the consis-
tency verification process.

5.2 Output Validation using a SPARQL Query

The last step after the reasoner have checked the ontol-
ogy circuit consistency is to apply a SPARQL query for val-
idating the correct output of 1-bit comparator circuit. In our
case, we have defined a query which describes the circuit
and obtain the output for given input values. We can think
that SPARQL is the version of SQL for ontologies. Besides,
we can use variables in the queries, constraints, filtering in-
formation, logic operators, if statements and more. Each
triples (each line after) are linking by variables which begin
with a question mark. In this code ?typel and ?AB are ex-
amples of variables. The same name of variable imply the
same value to look for in the query. We can execute and edit

queries in Itzamna framework because the Jena API allowed
us to use SPARQL queries in our framework programmed in
Java language. The following example shows the SPARQL
query used in this work for validating the output values in
our 1-bit Comparator circuit.

PREFIX
PREFIX fn:
<http://www.w3.0rg/2005/xpath-functions#>

<http://www.ejemplo.org/#>

SELECT DISTINCT
?AgreaterB ?AequalB ?AlessB

WHERE
{
:xnorl :isTypeGate ?typel
?typel :hasName ?xnorName
?typel :hasInput2 ?AB
?AB :xnorOutput ?AequalB
BIND( if(?AB = :0_0, :0_1,
if(?AB = :0_1, :0_0,
if(?AB = :1_0, :1_1 ,:1_0)))
AS 7?ABneg )
BIND( if (?AB = :0_0, :1_0,
if(?AB = :0_1, :1_1,
if(?aB = :1_0, :0_0 ,:0_1)))
AS 7?AnegB )
randl :isTypeGate ?type2
?type2 :hasName ?andlName
?ABneg :andOutput ?AgreaterB
rand2 :isTypeGate 2type3
?type3 :hasName ?and2Name
?AnegB :andOutput ?AlessB

If the user wants to give an specific input values, only
needs to change the variables ?AB and ?Cin for instances of
the Bits class. For example: :0_1 :xorOutput ?XorOutput .

An optional step, when the logic circuit has been verified
and validated, consists on storing the project independent of
the ontology or include it in the core ontology. It is impor-
tant to note that these challenges increase the reuse of this
ontology and decrease the time in the development of future
circuits. Benefiting the economy of companies (Knowledge
Capitalization [30][23]). In our example, the code included
in the core ontology was showed in Figure 3.

6. Conclusions

Teaching Logic Circuits by means of Semantic Web
Techniques is possible with core ontologies, reasoners, and
SPARQL queries. Ontologies are usually expressed in
a logic-based language (Description-Logic), enabling de-
tailed, sound, meaningful distinctions to be made among
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Figure 3. Consistency checking of the new circuit
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