
Chapter 15
Semantic Wrapper: Concise Semantic Querying
of Legacy Relational Databases

Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto,
Debra Davis, Ouri Wolfson, Yelena Yesha, and Yaacov Yesha

1 Introduction

From business to education to research, one of the most common needs in today’s
world is the ability to efficiently and effectively store and organize information.
In the past several decades, the amount of information required to perform even
everyday tasks has dramatically increased. In addition, there has been a substantial
increase in the availability of more sophisticated and complex data, such as imagery,
multimedia, geospatial and remotely sensed data. As our need for more extensive
and complex information has increased, so has the size and complexity of databases
used to store this information. To even further complicate the situation, needed data
often resides in various independent, distributed databases as well as in unstructured
forms such as social media and web sites. This has resulted in a greater need for
more flexible, scalable and efficient database technology that can be used to store,
query, and combine massive amounts of various types of data that are distributed
over multiple structured and unstructured data sources [1–3].
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1.1 Relational Database Systems and Structured Query
Language (SQL)

The majority of commercial data systems in use to today are relational databases.
These database systems have been developed based on the Relational Data Model
proposed by Codd in 1970 and subsequently updated in 1990 [4, 5]. A relational
database is composed of one or more two-dimensional tables, each of which
contains data fields, or attributes, in the form of columns, and data records, or tuples,
in the form of rows. Relationships between tables are implicit, by cross-referencing
data values in fields found on different tables. The Relational Data Model has a
number of advantages that have contributed to the prevalence of these systems
including: (1) it has rigorous design methodologies (e.g., normalization), alleviating
redundancy and inconsistency, (2) the database schema is easily modifiable by the
addition of tables and fields, and (3) the database has flexible and powerful well-
defined operations, such as join, that is based on the algebraic set theory [6].

One of the biggest advantages of relational databases is the use of Structured
Query Language (SQL) as the standard query syntax in most relational database
products. In its basic form, the syntax is simple and relatively easy to understand and
use: Select fields From tables Where conditions. SQL can be
used directly on a database, or as embedded SQL within general-purpose languages,
or as an intermediary language via a standard communication protocol such as
Open Database Connectivity (ODBC) protocol, Java Database Connectivity (JDBC)
protocol or Object Linking and Embedding (OLE).

Relational database systems have become a staple in modern technology. How-
ever, the data needs of today’s world are increasingly changing at a very rapid
pace. As a result, today’s technology is becoming overtaxed and obsolete at an
increasingly faster rate as more sophisticated solutions are required. As this pressure
on technology has increased, the limitations of relational databases have come
more to the forefront. For example, relational databases are designed for organizing
information that is easily categorized by common characteristics, and described by
simple string or number data. Complex data, such as images, spatial and remotely
sensed data, and multimedia products, are not easily described or categorized in
this manner. Increased storage and utilization of massive amounts of complex data
tends to lead to the implementation of more complex database schemas. Due to the
difficulty in effectively handling these complex structures, this can lead, in turn, to
isolation of complex relational database systems where information cannot be easily
shared between those systems [1].

There are also challenges involved in the use of SQL. Although in its basic
form, SQL is a relatively simple and easy to understand syntax, rarely will a simple
query be sufficient to provide users with the data results that they require. This is
particularly true for the more common, complex systems in use today. The effective
use of SQL in most real-world relational databases requires technology specialists
who have extensive training in the principles of relational databases, and complex
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and efficient SQL query design. They must also have a thorough understanding of
the structure of the database of interest. This is because the relationship between
tables in a relational database is implicit rather than explicit, and data of interest of is
often found across various tables in the database. When creating a query, users must
explicitly identify each table and provide a formula relating the various tables in
order to effectively achieve the desired data results. The more abstract and complex
the relationships are between tables in the database, the more difficult it becomes to
create accurate and efficient queries.

These highly skilled database technology specialists are also needed when
designing and implementing a new relational database or making changes to the
structure of an existing system. Because relational databases are so easy to modify,
some untrained users mistakenly believe that one can simply add new tables and
fields without much thought. However, this flexibility makes it easy to create poor,
inefficient database designs that do not meet the needs of end users. These complex
solutions require thorough analysis and planning, and are quite expensive and time
consuming to implement or change.

1.2 Overcoming the Limitations of Relational Databases

In recent years, there have been a number of efforts to overcome the limitations
of relational database systems. Semantic and object-oriented databases have been
introduced that provide improvement on the structure of the database itself, such
as allowing explicit relationships between classes of objects, and the inclusion of
super-categories, sub-categories and inheritance. However, to be effective, these im-
provements to the structure of the database have historically required the addition of
enhanced query language [7]. Although this can provide more powerful capabilities,
it has also precluded the ability to use standard SQL for effective querying of these
databases, as well as the use of standard relational database interface tools.

Approaches that allow semantic and object oriented query interfaces over rela-
tional databases have also been proposed, including SQL3, Object query Language
(OQL), and various graphical query languages [7, 8]. While these provide the
advantages of the object approach, changes to the data models and syntax of SQL
are required to enable syntax expressiveness. This requires users to study new syntax
and does not allow the utilization of the very extensive existing middleware and end-
user GUIs that interface in standard SQL. Also, while the new languages work well
with new database implementations based on object models, it does not provide
improvement to existing relational databases. Further, these approaches require
additional training and a change in how users must approach their programming.
Standard SQL is a purely declarative language, whereas SQL3 and OQL, in
particular, are semi-procedural.

Graphical query languages attempt to make query interfaces more user friendly.
Through the use of approaches such as hypertext language, menu-driven queries
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and Query-By-Example (QBE), users theoretically need not learn SQL syntax. In
real world applications, however, these approaches only work well for very simple
databases and very simple queries. Attempting to use these types of approaches
for complex queries often leads to frustration when trying to follow the required
procedures, and produces irrelevant results once the user completes the process. In
order to be successful when creating complex queries, users must still have full
knowledge of the logical structures of the database of interest, and understand how
to express the needed joins correctly.

It is clear that there is a need for a more dynamic solution that overcomes
the increasing pressures and limitations of relational databases, while, at the
same time, avoids some of the obstacles encountered by other object oriented
approaches. To address and overcome these many challenges, Semantic Wrapper
technology has been created. The Semantic Wrapper is a middleware system that
provides semantic views over legacy relational databases. As middleware, this
system provides straight-forward, easy access to legacy relational databases without
requiring users to switch from their existing GUI to a new, unfamiliar GUI. It further
greatly improves usability by allowing the use of standard SQL syntax to access
the semantic layer via more simplified and concise SQL queries than what would
be required for direct querying of a standard relational database. This approach is
also applicable in a heterogeneous multi-database environment that can include both
structured (relational and semantic databases) and unstructured data (social media
and related Internet sites).

The remainder of this article presents an overview of the Semantic Wrapper and
its major components. Section 2 discusses the Semantic Wrapper’s primary features
and compares it to other systems. This is followed by discussions of the capabilities
and integration of its three major components in Sect. 3.

2 Semantic Wrapper Overview

The Semantic Wrapper is a set of middleware tools developed to quickly and easily
access and query relational databases, semantic databases and unstructured data
such as Internet data sources. To accomplish this, the Semantic Wrapper creates a
semantic schema view over relational and legacy databases. This schema is then
used by the system to provide users with the ability to query the data quickly
and easily. This technology allows the use of standard SQL queries to access the
semantic schema via simple and concise syntax. It enables the use of third-party
interfaces to formulate queries, allowing users continued use of familiar interfaces
while still providing them with the Semantic Wrapper’s powerful capabilities.

The system is based on the semantic modeling approach [9], and employs
the Semantic Binary Object Data Model (Sem-ODM) and Semantic SQL query
language (Sem-SQL) for improved data querying and usability [10]. Various aspects
and application of this and related technology are discussed in [11–15]. This
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Fig. 15.1 High-level architectural view of the Semantic Wrapper

platform provides the system with powerful and adaptive capabilities. When the
semantic features of these technologies are employed, they have been found to
provide a high level of efficiency when compared to relational databases [16].

2.1 Capabilities of the Semantic Wrapper

There are a number of object oriented approaches that are focused on overcoming
the problems inherent in the Relational Model’s inability to effectively deal with
modern data needs. To address these issues, other approaches have implemented
improvements to database structures, enhancements to standard query languages,
and the use of graphical user interfaces to improve ease of use. However, each of
these attempts has created their own challenges and limitations. These challenges
include:

• Inability to be implemented with existing relational databases and legacy systems
• Increased complexity and decreased user friendliness due to changes to query

languages
• Attempts to improve ease of use that also result in significantly decreased

functionality

The Semantic Wrapper has been designed to provide a powerful, yet easy to use,
system that improves our ability to work with various types of heterogeneous data
without encountering the above challenges.

The Semantic wrapper can be implemented either independently, or, as can be
seen in Fig. 15.1, over an existing relational database. A number of the object
oriented approaches discussed in Sect. 1.2 incorporate improvement on the structure
of the database itself to provide a greater capability to handle various types of data.
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While this was a major step towards more efficiently and effectively dealing with the
shortcomings of a relational schema, it does not allow for the ability to implement
the system with existing relational and legacy database systems whose structures
are not be amenable to structural change. The Semantic Wrapper has overcome this
obstacle by avoiding any changes to existing database structures. Instead, a separate
semantic schema is constructed that allows a compact and logical semantic view
while still providing an accurate reflection of the original database. This, in essence,
provides the system with the improved database structure sought by other systems,
without the same limitations. Thus, the Semantic Wrapper can be used to construct
new applications, or as an additional interface to existing relational databases.

The Semantic Wrapper uses Semantic SQL, which is syntactically identical to the
standard relational SQL, but exploits the semantics of relationships. This, in turn,
makes Semantic SQL queries much more concise and clear. Specifically, Semantic
SQL queries refer to a virtual relational schema that consists of inferred tables
defined as spanning trees containing all reachable relations from a given category.
Complications of multiple table references and keys are eliminated. As a result,
users have no need to explicitly express joins. Instead, when a user queries the
database, it is as if there is a universal table for each category. This significantly
reduces the complexity of queries, and significantly increases the user friendliness
of the system’s querying capabilities [17].

Attempts by other approaches, such as graphical query languages, to improve
user friendliness of database systems have succeeded in terms of simplifying the
process needed for very basic queries. However, these have also lead to significant
reductions in the ability to create even moderately complex queries that are more
commonly used in the real world. Even though the Semantic Wrapper’s increased
user friendliness is partially through the use of more simplified query syntax,
because of the use of Semantic SQL in combination with the Semantic Wrapper’s
structure and the various tools that are part of the Semantic Wrapper, there is no
decrease in functionality. Specifically, the mapping and query translation processes
that are used to create the semantic schema (see Sect. 3.1) and subsequently query
the database (see Sect. 3.3) merely hide the complexity from the user without
actually limiting functionality. In other words, the system does much of the work
for the user, without loss of functionality or an increase in errors.

In sum, the Semantic Wrapper is a solution that provides users with the ability to
view multiple data sources as one, centralized virtual database through a semantic
database schema, and access needed data via a standard, easy-to-use and flexible
interface. This standard interface allows users to interact and query data in a more
intelligent and friendlier manner that is based on the stored meaning of the data.
Further, third party tools that the user is already familiar with can be deployed with
the system. The system can be implemented independently for new applications,
or over an existing legacy relational database. Other advantages of using the
Semantic Wrapper include comprehensive enforcement of integrity constraints,
greater flexibility, and substantially shorter application programs [10].
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3 Technical Background

3.1 Semantic Schemas

A key component of Semantic Wrapper technology is the use of a semantic schema
that is functionally equivalent to a corresponding relational database. Use of an
equivalent semantic schema has numerous advantages over a relational schema,
including:

• Knowledge is described at a conceptual level rather than at a table layout level.
• Meaning of information in a semantic schema is retained and stored within the

schema itself.
• Relationships between categories are explicitly represented.
• It is significantly easier to formulate queries as any relationship can be queried

and joins are not required to be explicitly defined.

For example, a subschema of a Hydrology database that was developed for the
Everglades National Park can be seen in Fig. 15.2 and its normalized relational
counterpart can be seen in Fig. 15.3. As the semantic subschema is a conceptual
representation, its structure is more analogous to how the real world is conceptual-
ized by humans. This makes it easier for users to understand the types of information
contained in the database, as well as how data within the database is conceptually
related.

As can be seen in Fig. 15.4, Semantic SQL queries are an order of magnitude
shorter than the corresponding relational SQL query. This query is representative
of the types of real world information that might be needed by a user. In this case,
the user would be a scientist or environmentalist needing data about environmental
conditions over time (see Figs. 15.2 and 15.3 for the semantic and relational
subschemas). The question of interest “Give me all of the observations with all
of their attributes since January 1, 1993 and the location of the observing stations,”
requires a very short and easy to compose query to the semantic schema. As can
be seen, if the same query were written for a relational schema, the query would be
substantially longer and more complex.

3.2 The Semantic Binary Model

The semantic schemas used by the Semantic Wrapper are based on the Semantic
Binary Model (SBM) [9]. The SBM is a flexible, new generation data model that
is natural, simple, non-redundant, and implementation-independent. Its strength lies
in its ability more accurately capture the meaning of information, while, at the same
time, providing a succinct, high-level description of that information. Its use of
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Fig. 15.2 Semantic subschema for physical observations

objects, categories, and their relationships is very easy for users to conceptualize as
they are reflective of the manner in which users already think about the real world.
A sample semantic schema can be seen in Fig 15.5.

Objects – The central notion of semantic models is the concept of an object.
Objects are defined as any real world object or entity that we wish to store infor-
mation about in the database. Examples of objects include a student, department,
course, and course name. Objects can be further classified as concrete objects, which
are printable objects such as course name, or abstract objects, which are non-value
objects in the real world such as a course itself.

Categories – Objects that have common properties are considered in the same
category in the database. As with objects, categories can be concrete (consisting of
only concrete objects) or abstract (consisting of only abstract objects). Objects may
also belong to more than one category at a time. For example, an object can be both
a student and instructor at the same time (see Fig 15.5). A schema may also contain
subcategories. A category is a subcategory of another category if every object in that
category is always an object in the latter category. For example, a student is always
also person. Therefore, STUDENT is a subcategory of PERSON. On the opposite
end of the spectrum, categories can be disjoint. Two categories are disjoint if no
object can ever be a member of both categories at the same time. For example, a
student can never also be a course; therefore, STUDENT and COURSE are disjoint
categories.
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PHYSICAL-OBSERVATION-STATION
physical-observation-station-id-key:Integer      1:1;      comments:String;
housing:String;      structure:String;
is-part-of--physical-observation-station-id:Integer; 
_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

_______________________________________

LOCATION
north-UTM-in-key:Number; east-UTM-in-key:Number; elevation-ft:Number;
description:String; 

ORGANIZATION
name-key:String 1:1; description:String;

PROJECT
name-key:String 1:1; description:String; comments:String; starting-date:Date;
ending-date:Date; 

MEASUREMENT-TYPE
name-key:String 1:1; measurement-unit:String; upper-limit:Number; lower-
limit:Number; 

FIXED-STATION
physical-observation-station-id-key:Integer  1:1;  platform-height-ft:0..50.000;
located-at--north-UTM:Number;
located-at--east-UTM:Number; 

MEASUREMENT
observation-id-key:Integer      1:1;      comment:String;      time:Date-time;
value:Number;      of--name:String;
by--physical-observation-station-id:Integer; 

IMAGE
observation-id-key:Integer       1:1;       comment:String;       time:Date-time;
image:Raw;       subject:String;
direction-of-view:0..360; comments:String; type:Char(3); by--physical-
observation-station-id:Integer;

PHYSICAL-OBSERVATION-STATION--BELONGS-TO--
ORGANIZATION
physical-observation-station-id-in-key:Integer; organization--name-in-
key:String;

ORGANIZATION--RUNS--PROJECT
organization--name-in-key:String; project--name-in-key:String;

PHYSICAL-OBSERVATION-STATION--SERVES--PROJECT
physical-observation-station-id-in-key:Integer; project--name-in-key:String;

ORGANIZATION--IS-PART-OF--ORGANIZATION
organization--name-in-key:String; organization-2--name-in-key:String;

Fig. 15.3 Relational subschema for physical observations
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Fig. 15.4 Comparison of a semantic SQL query to a corresponding relational SQL query

Relationships – A binary relationship is a connection between two objects
indicating that they are related by a certain property. Such a property is called a
binary relation. At every moment in time, a binary relation R is descriptive of a
set of pairs of objects .x; y/ which are related at that time. This is denoted as xRy.
For example, an instructor WORKS-IN a department (see Fig 15.5). The relation is
WORKS-IN, and is denoted as i WORKS-IN d.

Binary relations may be m:1 (many-to-one), 1:m (one-to-many), m:m (many-to-
many) or 1:1 (one-to-one). A binary relation R is m:1 if there is never a time when
xRy and xRz where y ¤ z. For example, every person has only one birth year, there-
fore, BIRTH-YEAR is m:1. A binary relation R is 1:m if there is never a time when
xRy and zRy where x ¤ z. For example, every student can have at most one major.
If we had a relation MAJOR-STUDENT (instead of MAJOR-DEPARTMENT, which is
m:1), then that relation would be 1:m.). A binary relation R is m:m if it is neither m:1
or 1:m. For example, every instructor can work in more than one department, and
every department can employ more than one instructor. Thus, WORKS-IN is a m:m
relation. A binary relation R is 1:1 if it is always both m:1 and 1:m. For example, if
every course is uniquely identified by its name (there is no character string that can
be the name of two or more courses), then COURSE-NAME is 1:1.

The domain of a relation is the smallest category such that for every xRy, x always
belongs to the category. The range of a relation is the smallest category such that for
every xRy, y always belongs to the category. For example, the domain of WORKS-
IN is INSTRUCTOR and the range is DEPARTMENT. A binary relation is total
if for every object x in its domain, there always exists an object y such that xRy.
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PERSON

last_name:String
first_name:String
birth_year:String
address:String

STUDENT INSTRUCTOR

DEPARTMENT

name:String 1:m

COURSE_
ENROLLMENT

final_grade:Integer

COURSE

name:String 1:1

QUARTER

year: Integer
season:String

the_student
(m:1)

major
(m:1)

minor
(m:1)

works-in
(m:m)

the_instruct
or (m:1)

the_course
(m:1)

the_offer
(m:1)

the_quarter
(m:1)

COURSE_
OFFERING

Fig. 15.5 Semantic schema of a University application

For example, the domain of the relation BIRTH-DATE is PERSON. Although every
person has a date of birth, that date of birth is not always known. Therefore, BIRTH-
DATE is not total.

A binary relation whose range is a concrete category is called an attribute.
Thus, the phrase “a is an attribute of C ” means that a is an attribute and its
domain is category C . For example, LAST-NAME, FIRST-NAME and BIRTH-YEAR

are attributes of PERSON.
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3.3 Semantic SQL

The Semantic SQL language paradigm is the core interface of the Semantic Wrapper
both to the end user and as a middleware. Semantic SQL was originally designed to
query semantic and object oriented databases, and, as part of the Semantic Wrapper,
it is used to query a semantic schema that is reflective of the underlying relational
schema. Semantic SQL is syntactically identical to Standard SQL but assumes a
virtual schema comprised of infinitely-wide tables, one table per semantic category
with all the fields reachable from it. In the middleware mode, the fact that the
user refers to this virtual schema is technically transparent to third-party tools, thus
allowing for standard protocols, such as ODBC and JDBC. Thus, for example, the
user can utilize a third-party GUI to create a query. The input is user clicks, the GUI
output is SQL. The complexity of the input is proportional to the complexity of the
output. Because the formulation of a query in Semantic SQL is very concise in the
output, so is the user’s input as measured by the number of clicks and the intellectual
complexity of the task.

Because Semantic SQL syntax is identical to the relational SQL syntax, it
supports standard database access interfaces such as ODBC and JDBC. Thus,
Semantic SQL, like standard SQL, is a purely declarative query language. This
is particularly advantageous for users as there no need to learn new query syntax
or a new programming approach. Where Semantic SQL and relational SQL differ
is in the simplicity of Semantic SQL queries as compared to relational queries.
Because semantic databases use real world concepts such as objects and categories,
Semantic SQL is able to query schemas at the conceptual level instead of the table
layout level.

Semantic SQL queries refer to a virtual relational schema that consists of inferred
tables defined as spanning trees containing all reachable relations from a given
category. A virtual table is implicitly defined for each category in the semantic
schema, where all related data is grouped together. Appendix 1 provides a formal
definition of this grouping. Referring back to our semantic schema in Fig. 15.5, the
following is an example of some of the fields in the virtual table for the category
STUDENT.

For ease of use, every attribute in a virtual table has a short semantic name and a
long semantic name. A short semantic name is created by removing prefixes in the
long attribute name, and can be used for queries so long as there is no ambiguity
within that virtual table. For example, in the virtual table STUDENT, the long
semantic name for one attribute is the student the offer the quarter year and
its short semantic name is year. As there is no other attribute of the same depth
with the name year in this virtual table, no ambiguity arises from use of this short
semantic name. Conversely, using the abbreviated attribute name would lead to
ambiguity as there would be two possible attributes of the same depth that this could
represent: the student major name and the student minor name. In this case, it
can be disambiguated by using either major name or minor name.
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Full Attribute Name Abbreviation Type Sample

STUDENT – surrogate 123235
last name – string Smith
birth-year – integer 1990
the student the offer the quarter year year integer 2011
the student the offer the quarter season season string Spring
the student final grade final grade integer 75
Major – surrogate CS
Minor – surrogate ECE
major name – string CompSci
minor name – string Electrical

In the virtual table for STUDENT, the attribute STUDENT major name (where STUDENT is
the category, MAJOR is the relationship, and NAME is the attribute) refers to “the name of the
department in which a student majors.”

With relational SQL, users usually need to define a join operation to link two
tables together. While inner joins are hard enough to define, most realistic queries
require an outer join (left outer join), which is very hard to define in relational
SQL. As can be seen in the above example, Semantic SQL relieves users of the
need to explicitly express joins. Instead, joins are expressed in the names of the
attributes found in the virtual table. Because of the semantic information inherent
in the schema, there is no ambiguity in the query. This results in simpler query
construction for the user. For example, if a user wants to retrieve the first name and
last name of a student whose major department is “computer science,” the Semantic
SQL query is a follows:

select first name, last name from STUDENT
where major name D ‘computer science’

In the relational SQL, however, the same query might be composed as follows
(depending on the relational schema):

select first name, last name from STUDENT, DEPARTMENT
where STUDENT.deptID D DEPARTMENT.deptID and

DEPARTMENT.name D ‘computer science’

Semantic SQL queries requesting the retrieval of more complex combinations of
information are still simple. For example, a query to retrieve the student’s last name,
first name, address, major, name of each course, final grade for the course, year and
semester the course was taken, for every student would be:

select last name, first name, address, major name,
the course name, final grade, season, year

from STUDENT
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Should a user prefer to explicitly express join conditions, they can still do so. As
Semantic SQL is completely compatible with relational SQL, the syntax is exactly
the same for both query languages.

Queries to update against a virtual relational database are inherently ambiguous.
Semantic SQL provides disambiguating semantics on the underlying semantic
schema (see Appendix 2 for formal definitions). As with queries for retrieving data,
standard SQL syntax, such as insert, delete, and update, is used. An example of a
simple update is:

Delete students whose final grade is less than 50:
Structure: delete from C where condition
Example: delete from STUDENT where FINAL GRADE< 50

4 Components of the Semantic Wrapper

The Semantic Wrapper is primarily comprised of three engineering components
that can be used as either a standalone application or as middleware. This section
provides a high-level description of each of these components, a description of how
these components interact with each other to produce the desired results, and an
example that illustrates the Semantic Wrapper’s capability to be implemented as
middleware.

4.1 The Knowledge Base Tool: Reverse Engineering
of a Semantic Schema

In order to interpret Semantic SQL queries to a relational database, a semantic view
of the database must be created. This is the primary function of the Knowledge Base
Tool (KDB Tool). By using this tool, the user is able to create semantic information
for a relational database of interest via the construction of a semantic schema that
accurately reflects the information in and structure of data in the relational database.
This can include the specification of inheritance of categories and many-to-many
relations.

The KDB Tool’s capabilities are designed to ensure the integrity of the mapping
between the original relational database and the corresponding semantic schema.
This is accomplished by enforcing a rule at every step of the creation process
that keeps specific mapping information between the relational database tables and
semantic schema categories and relations intact. The system will not allow changes
to be made to the semantic schema that would damage the integrity of the mapping
information.
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Use of the KDB Tool on a standard relational database involves a possible total
of eight steps, four of which are automated and four of which involve the skills
and knowledge of the relational database’s administrator [18]. To automatically
generate the initial semantic schema, it is assumed that metadata regarding tables,
attributes, primary keys, and other constraints are available via the relational
database management system in use. The first four steps needed to create the
semantic schema are as follows:

1. A category in the semantic schema is created for each table in the relational
database.

2. Within each semantic category, an attribute is created for every field (i.e.,
column) in the corresponding relational table.

3. A semantic relation is created for each functional dependency in the relational
database.

4. Within each semantic category, attributes that correspond to foreign keys in
the relational database are removed (these are reflected in the relations that are
created in step 3, rendering these attributes redundant).

A sample relational database structure can be seen in Fig. 15.6, along with its
transformation through step 4 to the semantic schema seen in Fig. 15.7. Perusing
both figures, it is easy to discern the correspondence between the relational and
semantic schemas. For example, the relational table CURRENCY FOR COUNTRY

corresponds to the semantic category CURRENCY-FOR-COUNTRY. The functional
dependency between CURRENCY FOR COUNTRY and CURRENCY relational tables
transformed into a semantic relationship, “the-currency,” and the foreign key,
THE CURRENCY CODE KEY, was removed as it is reflected in the semantic rela-
tionship between CURRENCY-FOR-COUNTRY and CURRENCY semantic categories.

Once steps 1–4 are completed, a valid semantic view of the database has been
created. This view, however, can be further refined to create a more accurate
reflection of the application’s semantics by completing steps 5–8, which require
human intervention, i.e., the skills and knowledge of the relational database’s
administrator (DBA). The reasons for this include the ease at which a database
domain expert can understand semantic databases, the DBA’s in-depth knowledge
of the structure of the relational database, the DBA’s intimate understanding of
needed userviews and end-user needs, and the DBA’s responsibility for the correct
functioning of the database tools.

Steps 5–8 of the semantic schema creation process are as follows:

5. Any semantic categories that correspond to a relational table whose sole purpose
is to represent many-to-many relations should be replaced with actual many-to-
many relationships in the semantic schema.

In our sample schema, this type of transformation can be seen in Fig. 15.8. In
short, the relational table CURRENCY FOR COUNTRY, contains only foreign keys
and has two many-to-one relationships. This is reflected in the semantic schema as
a category, CURRENCY-FOR-COUNTRY, that has no attributes and two many-to-one
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Fig. 15.6 Relational schema of a geography database

relationships. Thus, it is clear that the sole purpose of this category is to represent a
many-to-many relationship in the relational schema, which can be directly replaced
in the semantic schema as a many-to-relationship.

6. Any semantic categories that correspond to relational tables whose sole purpose
is to represent a recursive reference should be replaced with an is-part-of
relationship in the corresponding semantic category. This relationship may have
a cardinality of many-to-one or many-to-many.

In our sample schema, this type of transformation can be seen in Fig. 15.9. In short,
the relational table CITY NEAR CITY, contains only foreign keys and has two many-
to-one relationships with the CITY relational table. This is reflected in the semantic
schema as a category, CITY-NEAR-CITY, that has no attributes and two many-to-
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Fig. 15.7 Geography
semantic schema after
transformation through step 4
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one relationships with the semantic category CITY. Thus, it is clear that the sole
purpose of theCITY-NEAR-CITY category is to represent a recursive reference in the
relational schema.

7. Any semantic categories that correspond to relational tables whose sole purpose
is to represent a one-to-many relationship should be replaced with a one-to-many
attribute in the corresponding semantic category.

In our sample schema, this type of transformation can be seen in Fig. 15.10. In
short, the relational tables COUNTRY OTHER NAME andCOUNTRY have attributes
that contain the same information (the name of a country). Further, the table COUN-
TRY OTHER NAME has no other attributes and only a one-to-many relationship with
the COUNTRY relational table. This is similarly reflected in the semantic schema.
Thus, it is clear that the sole purpose of theCOUNTRY-OTHER-NAME category is to
represent a one-to-many relationship in the relational schema and should be replaced
with a one-to-many attribute, other-name, in the COUNTRY semantic category.

8. Include the relevant category inheritance hierarchy into the semantic schema.

Step 8 introduces an additional level of abstraction to the semantic schema. In our
sample schema, this type of transformation can be seen in Fig. 15.11. In short, the
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Fig. 15.8 Step 5 of the KDB
tool on the geography
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Fig. 15.9 Step 6 of the KDB tool on the geography database
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Fig. 15.10 Step 7 of the KDB tool on the geography database
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Fig. 15.11 Step 8 of the
KDB tool on the geography
database

relational tables COUNTRY, CITY and AIRPORT all have an attribute in common;
that is, they all have a name. Because of this commonality, a supercategory,
GEOGRAPHICAL-ENTITY, with the attribute name can be introduced into the
schema, and the name attribute can be removed from the aforementioned categories.

In addition, prior to defining a virtual table, the name of every category and
relation is “cleaned” as follows:

1. Replace all non-alphanumeric characters with “ ”
2. If the name begins with a digit or “ ”, prepend “A”
3. If the name ends with “ ” append “Z”
4. Collapse multiple “ ” into a single “ ”

Once this is completed, the systems checks to ensure that no ambiguity has been
introduced. If this process does introduce any ambiguity, the schema is rejected.
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4.2 Knowledge Base (KB)

The Semantic Wrapper’s Knowledge Base (KB) is the interface between the KDB
Tool and the Query Translator. All of the mapping information that is generated
by the KDB Tool during semantic schema creation is saved in the KB. The KB is
an Extensible Markup Language (XML) [19] file that will subsequently be used to
translate Semantic SQL queries into standard SQL queries by the Query Translator
(see Sect. 3.3). Specifically, the KB stores all the needed information for both the
relational and semantic database schemas, as well all derivation rules for query
translation. Its XML format, in particular, provides a flexible, robust and easy to
use avenue for capturing complex semantic information in conjunction with the
relational and semantic schemas.

Along with the KDB Tool, the KB includes sets of inference rules that can
be used to generate new knowledge that is needed during query translation.
This is particularly useful when there is not enough information to complete the
transformation of the semantic query, such as when the Semantic Wrapper is being
used to integrate data from heterogeneous multi-database environments.

4.3 Query Translator: Automatic Query Conversion

The Query Translator is the central processor of the Semantic Wrapper. This
component is responsible for transforming the easy to use Semantic SQL queries
that are based on the semantic schema into the more complex corresponding
relational SQL queries on the relational database. While this component translates
Semantic SQL queries into relational SQL queries that are significantly more
complex, they are still semantically equivalent to the original query posed by
the user.

To accomplish this, the Query Translator interfaces with the KB to retrieve and
use the semantic and relational schema information recorded during the semantic
schema creation (see Sect. 4.1), as well as any needed derivation rules. Once
the Query Translator retrieves needed information from the KB, it generates the
appropriate projections on virtual tables via the use of temporary views. Query
results are generated through the application of outer joins or sub-queries explicitly
in the Where clause between these temporary views. The constructed relational SQL
queries are subsequently transmitted to the relational database management system
via a standard interface.

Semantic SQL queries are often an order of magnitude shorter than the cor-
responding relational SQL queries. The complexity involved in transforming a
Semantic SQL query into a relational SQL query is best seen by a direct comparison
of SQL statements on a real world semantic schema and its relational counterpart.
Referring back to Figs. 15.2 and 15.3, some examples of real world Semantic
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SQL queries and their functionally equivalent relational SQL queries on these
subschemas include:

Example 15.1. List of the time and housing of temperature measurements
over 50ı

Semantic SQLStatement Relational SQL Statement

select housing, time from select housing, time
MEASUREMENT where from
of name D ’Temperature’ and PHYSICAL OBSERVATION STATION,
value > 50 MEASUREMENT

where exists
(select � from MEASUREMENT-TYPE
where name key D of name and
name key D ’Temperature’ and
by physical observation station id D
physical observation station id key
and
value > 50)

Example 15.2. The descriptions of organizations and locations of their fixed stations

Semantic SQLStatement Relational SQL Statement

select description, LOCATION select description,
from ORGANIZATION LOCATION.north UTM in key,

LOCATION.east UTM in key from
ORGANIZATION, LOCATION where
exists (select � from FIXED STATION
where exists (select � from
PHYSICAL OBSERVATION STATION
BELONGS TO ORGANIZATION where
name key D organization name in key and
PHYSICAL OBSERVATION STATION
BELONGS TO ORGANIZATION.
physical observation station id in yy D
FIXED STATION.
physical observation station id key
and located at north UTM D
north UTM in key and
located at east UTM D
east UTM in key))
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Example 15.3. The observations since January 1, 1993 (including images,
measurements, and their types) with location of the stations

Semantic SQLStatement Relational SQL Statement

select OBSERVATION ,
of , LOCATION from
OBSERVATION where
time > ’1993/01’

(select MEASUREMENT TYPE. �,
LOCATION.north UTM in key,
LOCATION.east UTM in key,
MEASUREMENT.�, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL from
MEASUREMENT TYPE, LOCATION,
MEASUREMENT where time > ’1993/01’ and
exists (select � from FIXED STATION where
by physical observation station id D
physical observation station id key and
located at north UTM D north UTM in key and
located at east UTM D east UTM in key and
of name D name key)) union (select
MEASUREMENT TYPE.�, NULL, NULL,
MEASUREMENT.�, NULL,NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULLfrom
MEASUREMENT TYPE, MEASUREMENT where
time > ’1993/01’ and not exists (select � from
FIXED STATION
whereby physical observation station id D
physical observation station id key and of name
D name key)) union (select NULL, NULL, NULL,
NULL, LOCATION.north UTM in key,
LOCATION.east UTM in key, NULL, NULL,
NULL, NULL, NULL, NULL, IMAGE.� from
LOCATION, IMAGE where time > ’1993/01’ and
exists (select � from FIXED STATION where
by physical observation station id D
physical observation station id key and
located at north UTM D north UTM in key and
located at east UTM D east UTM in key))
union (select NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL,
NULL, IMAGE.� from IMAGE where time >

’1993/01’ and not exists (select � from
FIXED-STATION where
by physical observation station id D
physical observation station id key))

As can be seen in these three examples, the relational SQL queries that are
constructed by the Query Translator are often substantially larger and more complex
than the semantic SQL queries created by users.
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Fig. 15.12 Overall architecture of the Semantic Wrapper as middleware for a web application

4.4 Semantic Wrapper as Middleware

The Semantic Wrapper is a middleware system that provides semantic views over
legacy relational databases. As middleware, this system provides straightforward,
easy access to legacy relational databases without requiring users to switch from
their existing interfaces to a new, unfamiliar interface. As illustrated in Fig. 15.12,
the Semantic Wrapper can be employed in many environments and for numerous
applications, including as middleware for web applications.

The Semantic Wrapper greatly improves usability by allowing the use of standard
SQL syntax to access the semantic layer via more simplified and concise SQL
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queries than what would be required for direct querying of a standard relational
database. This approach is also applicable in a heterogeneous multi-database
environment that can include both structured (relational and semantic databases)
and unstructured data (social media and related Internet sites).

5 Conclusion

The Semantic Wrapper is a middleware system that can be used to greatly improve
the ability to meet the intense and ever-changing data management needs of today’s
world. The Semantic Wrapper provides an easy to use method for accessing legacy
and relational databases, while still maintaining the ability to be implemented as a
standalone solution. It allows users to continue to use familiar GUIs and greatly
decreases the complexity of SQL syntax needed from users to fulfill their data
requests. Finally, the system can be used over both structured and unstructured,
heterogeneous data sources, providing a set of tools that can easily incorporate new
and diverse sources of data.
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Appendix 1: Semantic SQL Virtual Tables Formal Definition

The virtual table T .C / for a category C , recursive definition:

1. The first attribute of T:

C — attribute of T , range: C.m W 1/

2. For every attribute A of T , for every relation r applicable to the range of A:

A r — attribute of T , range: range(r) (m:1)

Note: this virtual table is infinite. When interpreting a specific query, a finite
projection of this table is assumed as further explained in Technical Notes.
The name of T is the same as of C .
Note: to-many original relations are reduced to to-one attributes of the virtual table.
If the semantic relation r is many-to-many or one-to-many, the new attribute would
be many-to-one, but many virtual rows would exist in the table T , one for each
instance of the tree. If r has no value for an object, a null value will appear in the
virtual relational table.
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The relation r may be inferred. The range of a virtual attribute may be of multi-
media types: numbers with unlimited varying precision and magnitude, texts of
unlimited size, images, etc.

Abbreviation of Prefixes

• Every component relation r in the virtual attribute name may be named by its
full semantic name or, if no ambiguity arises, by its short semantic name.

• The attribute names of T contain long prefixes. These prefixes can be omitted
when no ambiguity arises, i.e.: attribute y is an abbreviated synonym of the
unabbreviated attribute x y of T if T has no other unabbreviated attribute z y
where depth (z) � depth (x).

depth (x) is the number of relations present in x.

Surrogates

All attributes of T .C / of type Abstract are replaced by their surrogates of type
String.

Definition of the Extension of a Table

The virtual table T for a category C is logically generated as follows:

1. Initially, T ŒC � D C , i.e. T contains one column called C , whose values are the
objects of the category.

2. For every attribute A of T , for every schema relation or attribute r whose domain
may intersect range.A/, let R be the relation r with its domain renamed A and
range renamed A r, let T be the natural right-outer-join of T with R. (Unlike a
regular join, the outer join creates A r D null when there is no match.)

3. For a given query q the virtual table against which q is interpreted, T ŒC; q�, is a
projection of T ŒC � on the following virtual attributes:

• the virtual attributes that appear in the query,
• the unabbreviated prefixes of said attributes (including the surrogate

attribute C ),
• and the attributes p r where p is any of said prefixes and r is an original

printable-type to-one attribute of the semantic schema.

Note: the projection operation here is a set operation with duplicated tuples
eliminated.
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User-Control of Table Depth

(Used only by sophisticated users trying to outsmart $MAXDEPTH defined by a
graphical user interface; not needed by users posing direct SQL queries without
a GUI.)

• For each category C , in addition to the default table named C , of depth limited
by $MAXDEPTH, there are also tables called C i for any positive integer i , with
the depth limited by i rather than $MAXDEPTH. Also, there is a table C 0 which
includes only the original to-one attributes and relations whose domain is C or a
supercategory of C and the surrogate attribute of C .

ODBC Schema Queries

• The ODBC request for the names of all tables is interpreted as: for every category
get the primary virtual table C and the tables C 0 and C 1.

• The ODBC request for the names of all attributes of a given virtual table T
returns all attributes maximally abbreviated. If the request is for the virtual table
corresponding to a category C , only attributes of C 2 are returned

• The ODBC request to browse the virtual table is denied. (Browsing of C 0 is
permitted. Browsability of C 1 is not guaranteed)

Appendix 2: Disambiguation of Arbitrary Semantic SQL
Updates

Let C be a category against which an update operation is performed.
Notation:

T D T .C / – the virtual table of C .
A – the list of full names of attributes of T that are assigned values in the
operation.
R1; : : :; Rn – the set of relations of C such that for some suffix s; Ri s is in A.
(That is, Ri s is a two-step or deeper attribute.)
C1; : : :; Cn – the ranges of R1; : : :; Rn.
Si – list .sjRi s in A) in the order of appearance in A.
V.a/ – For every attribute a in A let V.a/ be the value being assigned to the
attribute a. For every s in Si let V.s/ be the value assigned to Ri s. Let V.Si/
be the list of V.s/ where s in Si .
Ei – the list of assignments s D V.s/ for s in Si .
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(1) delete from C where condition

(a) Perform: select C from C where condition
(b) For every resultant object o in C : remove o from C .

Example:
delete from STUDENT where FINAL GRADE<50

(2) insert into C (attributes) values (assignments)

(c) Create a new object in C . Let this object be denoted o. Its one-step
relationships are assigned values from the assignments. If a one-step
relationship is m:m or 1:m then only one value may be assigned.

(d) For every category Ci in C1: : :Cn do:

(1) if Ri Ci is in A and V (Ri Ci ) D“new”
then recursively perform:

insert into Ci (Si ) values (V (Si ));
let v be the object inserted above

else do:

(2.1) perform: select Ci from Ci where Ei

(2.2) if the above select results in exactly one object,

then denote that object v
else abort with an error message

(2) relate: o Ri v

Example: create a new student James in the department in which Johnson works and
enroll Jim in the only existing offering of “Magnetism”:

insert into STUDENT

(FirstName, Major WorksIn LastName, Enrollment, The Course)
values (’James’,’Johnson’,’new’,’Magnetism’)

(3) insert into C (attributes) query

(e) Evaluate the query, resulting in a set of rows.
(f) For each row r perform: insert into C(A) values (r)

Example: For every instructor create a department named after him and make him
work there:
insert into DEPARTMENT

(Name, WorksIn )
select LastName, Instructor
from Instructor
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(4) update C set assignments where condition

(g) perform:
select C from C where condition

(h) for every object o in the result of the above query perform:

(1) The object’s one-step relationships are assigned values from the assign-
ments, i.e.: for every one-step attribute Ai in A perform: o:Ai WD V (Ai )

(2) For every category Ci in C1: : :Cn do:

(2a) if Ri Ci is in A and V (Ri Ci ) D“new”
then recursively perform:

(2a1) insert into Ci (Si ) values (V (Si ));
(2a2) let v be the object inserted above

(2b) else do:

(2b1) perform: select Ci from Ci where Ei

(2b2) if the above select results in exactly one object,

then denote that object v
else abort with an error message

(2c) o:Ri WD v

(5) insert into C R: : :

Allows creation of multiple relationships R. This cannot be accomplished with
previous commands when R is many-to-many and many values need to be assigned.
Note: C R has been defined as a virtual table.
Example: let Johnson work in Physics

insert into INSTRUCTOR WorksIn (INSTRUCTOR,DEPARTMENT)
select distinct INSTRUCTOR, DEPARTMENT
from INSTRUCTOR, DEPARTMENT
where INSTRUCTOR.LastNameD’Johnson’ and
DEPARTMENT.NameD’Physics’

Example: let Johnson work in every department
insert into INSTRUCTOR WorksIn (INSTRUCTOR,DEPARTMENT)
select distinct INSTRUCTOR, DEPARTMENT
from INSTRUCTOR, DEPARTMENT
where INSTRUCTOR.LastNameD’Johnson’

(6) delete from C Rwhere condition
Allows deletion of multiple relationships R.
Example: do not let Johnson work in any department Smith works in.

delete from INSTRUCTOR WorksIn
where LastNameD’Johnson’ and WorksIn (
select WorksIn from INSTRUCTOR where LastNameD’Smith’)

(7) Object surrogate assignment: if in an insert statement there is an assignment of
a user-supplied value to an object being created, that value becomes the object’s
surrogate, overriding surrogates generated by other algorithms. In the database it
is entered into the attribute UserSuppliedSurrogate, which is enforced to be 1:1.
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Further, if this value begins with the character “#” the database will derive the
internal object id from this value — it may have effect only on efficiency. If this
value begins with a “$” it will be automatically erased at the end of the session.
Example:

insert into INSTRUCTOR (Instructor, FirstName)
values (’John’,’John’)

Note: any expression producing an abstract object is automatically converted into
that object’s surrogate.
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