
Towards a Software Domain Metric based on Semantic Web Techniques

F. Edgar Castillo-Barrera1, Héctor G. Pérez-González1, and S. Masoud Sadjadi2
1School of Engineering, Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, México

2School of Computing and Information Sciences, Florida International University (FIU), Miami, USA

Abstract

The reuse of software remains a major objective in the
software industry. An important task in order to accom-
plish this goal is to classify the software based on the ap-
plication domain for which it was done. This action facil-
itates their possible assembly with other programs based
on the same vocabulary and domain. In this paper we de-
scribe a software domain metric which is measured based
on semantic web techniques. This metric is independent of
lines of code, binary and executable code of the software,
and the programming language. Our approach is based
on a lightweight ontology of CORBAL-IDL language and
SPARQL queries. The ontology captures the vocabulary
and its relation. This is encoded using OWL DL, supported
by the Pellet reasoner to check the ontology component con-
sistency. The populated ontology is queried using SPARQL.
These queries look for matching words based on a vocab-
ulary which describes a domain. We use an example and
a prototype (a semantic framework called Chichen-Itza) to
show the feasibility of our approach.

1. Introduction

The IEEE Standard 610.12-1990, Standard Glossary of
Software Engineering, defines a Metric as: ”A quantita-
tive measure of the degree to which a system, component,
or process possesses a given attribute”. This quantitative
measure is not always possible to apply based on lines of
code. For example, Software Components are sold with-
out source code. Another example is the concept of ab-
stract attributes, for which there are not direct ways of mea-
suring them or to quantify them. In this work we focus
on attributes based on ”the domain or context” which al-
lows us to determine if a software component or applica-
tion was done for a specific domain. Information about the
domain can be used to determine if it is possible to assem-
ble two software componentes, for example. Crnkovic and
Larsson [8] define Component-Based Software Engineering
(CBSE) ”as an approach to software development that relies

on software reuse”. The goal of CBSE is the rapid assembly
of complex software systems using pre-fabricated software
components. In order to achieve this aim, methods for veri-
fying the matching among components based on its domain
are necessary.
In this work, we propose a software metric based on se-
mantic web techniques (Ontologies, Reasoners and Seman-
tic queries) in conjunction with the Chichen-Itza framework
to mitigate this problem. We propose an approach for mea-
suring such indicators. This approach looks for matching
words in a CORBA-IDL++ file using and Ontology popu-
lated with words based on a vocabulary for a specific do-
main. For each application, artifact or software component
it is neccesary to make a file in CORBA-IDL++ and a file
with the vocabulary of the domain. CORBA-IDL++ is an
extension of CORBA-IDL language which we made it for
this purpose. Our method for measuring is able to check
matching words in differente languages and it can recog-
nize a word within another.
Our method for measuring, can only be applied if the appli-
cation, artifact or software components can be described as
methods and parameters. Binary, Executable, and Source
Code are not required. In this work, we consider the fol-
lowing definition: ”A component is a reusable unit of de-
ployment and composition that is accessed through an inter-
face”[8]. In practice, we have noted that problems related to
interface incompatibility are frequent. In particular, incom-
patibility with the semantics of operation parameters and
interface operations (behavioral contracts [4]). We consider
that the use of a semantic matching approach (a software
component ontology) could help to detect domain based on
the vocabulary of the domain before the component-based
system is deployed. The rest of the paper is structured as
follows. In Section 2 we present our proposal to measure
the vocabulary in a specific domain. In Section 3 we explain
the Semantic Web Framework called Chichen Itza and se-
mantic web techniques (Ontologies and SPARQL queries).
Section 4 shows an example about our semantic approach
in the ATM domain. In Section 5 we draw some concluding
remarks. Finally, acknowledgments are given in Section 6.

Figure 1. Process to measure the Vocabulary Domain.

2. A Metric based on Semantic Web Tech-
niques

2.1 How to measure?

The measurement process takes place in five steps as
shown in Figure 1. In the first step, the user must create
an input file written using the language of CORBA-IDL++
(which is an extension of the language of CORBAL-IDL)
where it must specify the methods or instructions with its
parameters. It is also necessary to have a file with the vo-
cabulary of the domain to check, which must be as complete
as possible.

In the second step it is necessary to translate the input
file written in CORBA-IDL++ into the language RDF. On
having applied the translator, a file with extension n3 is gen-
erated.

Phase 3 will need to join the generator file by the trans-
lator in n3 with the file the vocabulary of the domain and
the ontology of CORBA-IDL developed to the prototype of
Chichen-Itza in just one project (which will be called le on-
tological project).

In phase 4, we have to apply the Pellet Reasoner to the
ontological project created in the previous phase.

It is at this stage where the reasoner verifies the consis-
tency of the ontology. If the consistency is right we can

ensure that the ontology does not have problems of incon-
sistencies, so we can apply Semantic queries without prob-
lems of computability and decidability [13].

Finally, in phase 5 the user has to apply a query made in
SPARQL to search the vocabulary in the ontological project
and thus with this to have how many words matched with
the language used in the application. With this information,
we can apply the semantic metric.

2.2 What is the Metric?

The most common definition of Metric is: ”quantitative
measure of degree to which a system, component or
process possesses a given attribute”. The metric proposed
tries to give a quantitative measure of degree to which a
system possesses an attribute based on a specific domain
or context. The formula that appears below calculates
the percentage to which a program belongs in a specific
domain:

MDom = #matching words input vocabulary
#identifiers (#methods+#parameters) * 100

In order to calculate this, we have to know the number
of matching words, the number of methods and parameters.
We want to point out that the words defined in the input
vocabulary file have to be as complete as possible. In table
1 we have calculated the metric for 6 applications, 3 of

Table 1. The results obtained after we have applied the semantic metric

Application In ATM Number of Number of Number of Words Matching Semantic Approved
Domain Methods Parameters Vocabulary domain Words Metric

A Yes 7 5 15 8 66 Yes
B Yes 25 46 15 60 84 Yes
C Yes 50 92 15 121 85 Yes
D No 60 127 15 4 2 No
E No 70 140 15 1 0.5 No
F No 80 204 15 6 2 No

them are in the ATM domain and the others are not. For
example in application A:

MDom = 8
(7+5) * 100= 66

2.3 Ontologies

An ontology [10] is a knowledge representation which
defines the basic terms and relations comprising the vocabu-
lary of a topic area, as well as the rules for combining terms
and relationships used to define extensions to the vocabu-
lary. In our case, the domain area is CORBA-IDL language.

2.4 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF). We have selected it because this is
a W3C Recommendation [18]. We use Web Ontology Lan-
guage (OWL-DL) [19] which extends RDF and RDFS. We
selected OWL DL language because we can assure that all
conclusions given by the Reasoner are computable and de-
cidable.

3 Chichen Itza: a Semantic Web Framework

Chichen Itza 1 is a Semantic Web Framework which al-
lows the management of semantic models (Ontologies) in
memory, verify its consistency (Reasoners) and execute se-
mantic queries in SPARQL language. Chichen Itza consists
of a friendly visual editor where the users can edit, save
and load their ontologies and queries. This framework was
programmed in Java language [11] and is portable to other
plataforms. The Chichen Itza framework is shown in 2

3.1 A CORBA-IDL Ontology

A CORBA-IDL Ontology was created for verifying in-
formation about the input domain models. This ontology

1Chichen Itza is the name of a large city built by the Maya civilization

consisted of 20 classes, 28 Object Properties, 36 Data
Properties and it was written using n3 notation [3] because
it is easier to understand than RDF in its XML syntax.
The main classes are: ComponentType, Interface, Method,
DataType, Parameter, ComponentModel, PreCondition and
PostCondition. The Ontology is built by means of classes
and relations among concepts. These concepts and classes
correspond to the specification of an abstract data type and a
set of methods that operate on that abstract data type. Each
method is specified by an interface, type declarations, a
pre-condition, and post-condition [8]. The interface of a
method describes the syntactic specification of the method.
Interfaces define the methods used in contracts. The typing
information describes the types of input and output or both
parameters and internal (local) variables. All of the above
is represented in our ontology (class Type, class Parame-
ter, etc.). The most important part to consider in our ontol-
ogy are the Conditions (Pre and Post). The Pre-condition
describes the condition of the variables prior to the execu-
tion of the method whose behavior is described by the Post-
condition.

3.1.1 Evaluating the ontology created

The ontology developed has been evaluated in an infor-
mal and formal way. Regarding the former, the ontology
was evaluated by the developers using the Pellet reasoner
[14] to check the consistency of the ontology. The sec-
ond evaluation applied to the ontology is based on the work
of Gómez-Pérez [2] who establishes five criteria: (consis-
tency, completeness, conciseness, expandability and sen-
sitiveness). The number of concepts and their relations
among them, allow us to check the ontology consistency
with less steps than other kind of ontologies.

3.2 Domain Verification based on Vocabulary

Our approach about matching words is based on inter-
faces as contracts by Szyperski [16]. Interface specifica-
tions are contracts between a client of an interface and a

provider of an implementation of the interface. A contract
states what the client needs to use the interface. It also states
what the provider requires to implement to meet the services
promised by the interface. Such a match is validated for
sytactic and functional semantic aspects. In the first case, it
is checked whether the provided interface includes at least
the same list of methods defined in the required interface.
We follow a structural approach whereby the names of the
interface operations can be different but the types of the pa-
rameters and the order of the paramenters must be compli-
ant. Conditions defined for each method have to be matched
with the same variable, logic operator and value. We ver-
ify restrictions and assumptions at construction time, in a
completely static manner, prior to the testing stages. Se-
mantic verification is the process which uses Semantic Web
Techniques (Ontologies and SPARQL queries) to guarantee
compliance with contractual agreements. The semantics of
an operation are described in an interface (contract). The
only task for the user before applying our model is to de-
fine the vocabulary of his domain and semantics. He in-
troduces his model into the framework by means of a file
or by the menus that allows to do an automatic evaluation
by using the Pellet reasoner [14] which checks inconsisten-
cies. Chichen Itza transforms his vocabulary from a text file
into an ontology instances and its relations. The instances
are created from classes defined in the software component
ontology.

3.3 Extending CORBAL-IDL vocabulary with
Semantics

CORBA(Common Object Request Broker
Architecture)[17] is a standard created by the Object
Management Group (OMG)[7] that enables software com-
ponents written in different computer languages to work
among them by means of their interfaces. These interfaces
are described using the Interface Definition Language
(IDL). In our semantic model, we need to receive the
interface written using the concepts and properties defined
in the CORBA-IDL ontology. For the reasons above, we
have decided to use the keywords of the CORBA-IDL
with elements of the ontology and supported with Chichen
Itza framework. For example, ComponentType, Interface,
Method, Parameter and hasNumParameters are keywords.
Part of the semantic ATM-IDL vocabulary. It is showed
below.

:Atm a :ComponentType .
:Bank a :ComponentType .
:IAtmClient a :Interface .
:IAtmClient :hasMethod :deposit .
:IBank a :Interface .
:IBank :hasMethod :withdrawal .
:deposit a :Method .

:withdrawal a :Method .
:amout a :Parameter .
:idClient a :Parameter .
:deposit :hasNumParameters 2 .
:withdrawal :hasNumParameters 3 .

In the code above we would like to emphazise that there
are some instaces of clases (Atm and Bank), some classes
(ComponentType, Parameter, Interface and Method), object
property hasMethod and just one data type property (has-
NumParameter). In particular, the notation :deposit :has-
NumParameters 2 means that the method deposit has ex-
actly 2 parameters.

3.4 The Pellet Reasoner

Pellet [14] is an open-source Java based OWL DL rea-
soner. In our verification process we use Pellet for checking
the consistency of the ontology. We have selected the Pellet
reasoner because it gives an explanation when an inconsis-
tency is found. It is also possible to check for restrictions.

3.5 Domain verification using SPARQL queries

For more complex checking we can apply other actions
such as: production rules [9]. We decided to explore seman-
tic queries in SPARQL [15] instead of production rules. The
second step after the reasoner has checked the ontology con-
sistency is to apply a SPARQL query. We defined specific
queries that evaluate matching words in methods and pa-
rameters identifiers. Such queries are completely transpar-
ent to the user who only needs to provide the file produced
in n3 by the translator. We have used Jena API [12] and
Java language [6] for programming and NetBeans IDE 7.0
[1]. SPARQL is similar to the database SQL but for ontolo-
gies. Besides, we can use variables in the queries, filtering
information, and if statements. Lines are linked by variables
which begin with a question mark. The same name of vari-
able implies the same value to look for in the query. The
Jena API allowed us to use SPARQL queries in our frame-
work programmed in Java language. The query which ver-
ifies the matching words with the name of the methods is
showed below.

PREFIX : <http://www.ejemplo.org/#>
PREFIX rdf: <http://www.w3.org/1999/02/

22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?Vocabulary ?MatchMethod WHERE
{
?Vocabulary rdf:type :Vocabulary .
?Interface :hasMethod ?Method .
BIND(if(regex(str(?Method),

str(?Vocabulary), "i"),

Figure 2. Chichen Itza Framework: two queries in SPARQL were used by looking for matching words

?Method, " ") AS ?MatchMethod)
FILTER (?MatchMethod != " ")

}

An additional benefit of using ontologies and SPARQL
queries has been the extra information (metadata) to offer
support for writing the CORABA-IDL++ file.

4 Example: Automated Teller Machine

ATM is a machine at a bank branch or other location
which enables customers to perform basic banking activi-
ties. The component model used for describing the ATM
was written using UML 2 notation [5], and is shown in fig-
ure 3. The vocabulary of the input file is created by the user
or expert in the domain of ATM. He selects which words are
used in that domain. In our example, for each component is
neccesary to create an input file written in CORBA-IDL++.

:bank a :Vocabulary .
:Atm a :Vocabulary .
:cashier a :Vocabulary .
:client a :Vocabulary .
:bankbranch a :Vocabulary .
:teller a :Vocabulary .
:card a :Vocabulary .
:money a :Vocabulary .

Figure 3. UML ATM Component-based system

:amount a :Vocabulary .
:password a :Vocabulary .
:balance a :Vocabulary .
:deposit a :Vocabulary .
:withdrawal a :Vocabulary .
:credit a :Vocabulary .

module ATM{
domain Bank;
subdomain Atm;

provided interface IAtmService{
oneway void locateBank();

long createSession();
long balance();
long creditLimit();

};
required interface IAtmClient{

long deposit(in short amount,
in short numclient);

void withdrawal(in short cardnumber,
in char password,
in short amount);

void locateNetwork();
};

};

5. Conclusions

In this paper we have presented and described a soft-
ware metric for measuring the percentage that belongs to
an application of a specific domain based on a vocabulary
used in that domain. In comparision with other metrics,
this metric tries to measure an abstract attribute based on
the vocabulary of a specific domain. This measure is based
on an Ontology, a Reasoner, and a set of SPARQL queries
which allow us an easy way to check matching words. This
model can be extended and enriched with more attributes
that rely on semantics. The Ontology was expressed in a
logic-based language (OWL DL). Using this language we
can assure the query will not have problems of computabil-
ity and decidability. The OWL DL ontology proposed is
checked with the Pellet reasoner. The use of a domain on-
tology allows us to search for specific words using intelli-
gent techniques such as SPARQL queries. Extending the
ontology with no functional properties (Quality of Services
attributes), Design Patterns and Object properties (hasIn-
voke, hasResponse, etc.) for measuring the behaviour are
key points for our future work.

6 Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. OISE-0730065.

References

[1] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans,
K. Ganfield, D. Green, K. Haase, E. Jendrock, J. Jullion-
ceccarelli, and G. Wielenga. The j2ee TM(tm) 1.4 tutorial
for netbeans TM(tm) ide 4.1 for sun java system application
server platform edition 8.1.

[2] S. Bechhofer, C. A. Goble, and I. Horrocks. Daml+oil is not
enough. In SWWS, pages 151–159, 2001.

[3] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web
tutorial using n3. In Twelfth International World Wide Web
Conference, 2003.

[4] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer, 32(7):38–
45, 1999.

[5] M. Bjerkander and C. Kobryn. Architecting systems with
uml 2.0. Software, IEEE, 20(4):57–61, 2003.

[6] P. J. Clarke, D. Babich, T. M. King, and B. M. G. Kibria.
Model checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16:1512–1542, 1994.

[7] O. CORBA and I. Specification. Object management group,
1999.

[8] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House computing library,
Norwood, MA, 2002.

[9] A. C. del Rı́o, J. E. L. Gayo, and J. M. C. Lovelle. A model
for integrating knowledge into component-based software
development. KM - SOCO, pages 26–29, 2001.

[10] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. pages 907–928. 1995.

[11] Java.net. Flamingo. http://java.net/projects/flamingo/, 2010.
[12] Jena. Jena a semantic web framework for java. 2000.
[13] J. Z. Pan and E. Thomas. Approximating owl-dl ontologies.

In Proceedings of the National Conference on Artificial In-
telligence, volume 22, page 1434. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[14] B. Parsia and E. Sirin. Pellet: An owl dl reasoner. In In
Proceedings of the International Workshop on Description
Logics, 2004.

[15] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of sparql. The Semantic Web-ISWC 2006, pages 30–
43, 2006.

[16] C. Szyperski, D. Gruntz, and S. Murer. Component soft-
ware: beyond object-oriented programming. Addison-
Wesley Professional, 2002.

[17] S. Vinoski. Distributed object computing with corba. C++
Report, 5(6):32–38, 1993.

[18] W3C. http://www.w3.org/consortium/. 1994.
[19] W3C. Owl web ontology language, 1994.

