Mapping Non-Functional Requirements to Cloud
Applications

David Villegas and S. Masoud Sadjadi
School of Computing and Information Sciences
Florida International University
Miami, Florida
{dvillo13, sadjadj@cs.fiu.edu

Abstract—Cloud computing represents a solution for appli- applications that respond to the new demands generategsin th
cations with high scalability needs where usage patterns, and field. First, developers must understand which non-funetio
therefore resource requirements, may fluctuate based on exteal requirements take renewed importance in cloud application
circumstances such as exposure or trending. However, in order . .
to take advantage of the cloud’'s benefits, software engineersSO tha.t they can be accounted forl during the requ!rements
need to be able to express the application’s needs in quantifi- analysis phase. Second, cloud providers need to define bette
able terms. Additionally, cloud providers have to understand guarantees for their services, so developers can design the
such requirements and offer methods to acquire the necessary systems accordingly. We believe that providing a solution t

infrastructure to fulfill the users’ expectations. In this paper, we haga problems will result in a more dependable use of clouds
discuss the design and implementation of an Infrastructure as a .
to confront the new challenges of this era.

Service cloud manager such that non-functional requirements i)]
determined during the requirements analysis phase can be In this paper we consider the concept Distributed En-

mapped to properties for a group of Virtual Appliances running sembles of Virtual Appliancg®EVASs), introduced in [2], as
the application. The discussed management system ensures thaly model to represent complex systems with Quality of Service
expected Qu_allty of Se_rwce_ is maintained during execution and (Qo0S) guarantees. We discuss how a software architecture
can be considered during different development phases.
can be mapped to a DEVA, and how through the use of
|. INTRODUCTION performance modeling and prediction we can make certain
The emergence of cloud computing responds to a increasegsurances about its behavior in the cloud in order to asldres
trend in web application emergence and utilization. Theewidts non-functional requirements. We finally present a case
adoption of Internet has resulted in systems that need study were we demonstrate the feasibility of our approach
accomodate millions of users [1] and provide capabilittest t to model the expected number of requests per second and
until now were only required by critical, high availabilityresponse time of a web application hosted in the cloud.
or high throughput software. The practice of Software Engi-
neering provides methodologies to ensure such charaatsris II. BACKGROUND
are met, but it is necessary to review how they fit in this
new paradigm. In this paper, we explore the applicability of We define a cloud application as any software that runs on a
traditional processes to the incipient field of cloud conmmut distributed system that complies with the definition afleud
from the perspective of our research in an Infrastructura as>Uch systems ([3], [4]) possess certain common capabilitie
Service (laaS) cloud manager. such as on-demand provisioning, resource elasticity or pay
Internet has resulted in rapid cycles of software deveper-use billing model. Therefore, cloud applications can b
opment, deployment and consumption by users. The risiflgployed on remote resources with a minimal cost, and scaled
number of subscribers, better network connectivity anddbardlynamically when user demand grows.
width, and the growing connectedness between users hav¥Ve consider three main actors in our scenario: application
created new dynamics where applications can be rapidigers, application providers, and cloud providers. In this
discovered and consumed. However, the benefits producedpiigposed division, application providers also have the ail
these circumstances are hindered when expected requitemel®ud users, even though in certain cases it would be pessibl
are not met. Nowadays, cloud computing is often employdaat application and cloud providers are the same inditidua
as a solution to this problem. Capabilities such as pay-p@- organization. The cloud is usually divided in Software,
use, scalability or elastic provisioning of resources cafph Platform and Infrastructure as a Service [3] —SaaS, PaaS
to overcome these new challenges. Nevertheless, applica@nd laaS respectively. Application providers are in chare
developers need to recognize how to apply Software Engine@nplementing the SaaS layer, while the PaaS and laaS layers
ing methods to the cloud in order to successfully map theire supplied by cloud providers.
needs to fulfill service expectations. A DEVA [2] is a group of Virtual Appliances and virtual
There are two interrelated points that we believe have tetwork devices, where individual and composite policias ¢
be considered to successfully make use of clouds to develwp defined for elements. Virtual Appliances [5] are Virtual

DEVA Agent Uptime

DEVA Manager Network | | oritoring The total time the service is available. It may be expressed
as a percentage. When considering this requirement, it is
&.:% Parser :%smmer :%lnf;;;g:;;we , necessary to take into account the provider's own uptime.
nsm,,% For example, if a provider has an uptime of 99.5%, it would
be impossible to deploy an application with a higher uptime.

Other factors involve the recoverability of the systene.(
Hypervisor how much time it takes to restart the service after a failure

happens).

Fig. 1. General architecture

Requests per unit of time
Machines with specific functions, usually containing a jgart This requirement describes the number of requests the

ular software and configuration; for simplicity, we'll usket ystem can handle successfully per unit of time, and can also

)) s
more general term VM to refer to them. Figure 1 illustrates tf‘be referred to as the system’s throughput. Resource atiocat

architecture of the DEVA Manager. A user sends a spemﬁcgﬁd usage has an impact in this parameter. Additionally, the

tion for a list of VMs and their associated QoS requirementﬁUmber of requests can have an impact in the response time
which may consist of CPU, memory and required software f?

S . équirement i(e., a high number of requests will result in a
|nd|V|duaI.VMs, and network bandwldth ar_ld latency for th eterioration of the overall response time).

network links. Then, the Manager instantiates the ensemble

across heterogeneous resources, which may be located in

different administrative domains. A group of agents manito Fault tolerance

each VM's behavior and provides the requested QoS andone of the system’s properties is how it can withstand
network isolation. errors, either hardware or software-based. In the caseuoficl
non-software errors can be generated either at the physical
the virtual machines hosting the service. While the first ¢ase
usually out of the developer’s control, virtual machinelfau

In Software Engineering, the requirements analysis phaggh be handled by different means, for example by spawning

is in charge of determining the functional and non-funaion new instances, or having backup VMs to respond to failures.
requirements of the system based on the client’'s needs. In

particular, non-functional requirements [6] describe thar-

acteristics of the system not related to its functionalityese

requirements shape the architecture of the system durmg th Security is another requirement that can be applied to

design phase. the cloud provider or to the developed system. In the first
In this paper we target a class of applications that acase, the application developer is under the provider'srigc

specially suited to be hosted in the cloud and have a prevalemeasures such as physical infrastructure access policies o

set of non-functional requirements. Identifying them wlo network isolation mechanisms. Alternatively, securitytire

developers to ensure that they are addressed during thieerequnstantiated VMs must be handled by the cloud user.

ment analysis phase, and establish a set of requisites thst m

be met by cloud providers in order to quantify their servicgyerational cost

and ascertain the application goals are met successfully. Wp

IIl. REQUIREMENT ANALYSIS AND ARCHITECTURAL
DESIGN

Security

enumerate the most salient ones next. In traditional systems, hardware was determined based on
. the application’s initial requirements. Changes in reguir
Response time ments would typically result in costly upgrades involvirgt

This requirement describes how much time it takes frogcquisition of new physical machines and installation and
the moment a user sends a request to the system, untoafiguration of the application to run on them. In cloud
complete response is provided. In web applications, this-coSystems, resources can be upgraded almost instantaneously
prehends request transmission and processing, and respda@aning that cost can be considered a changing variable.
transmission. The factors that account for it are resousse d his allows defining tradeoffs to architectural (static)dan
pabilities —processing power, memory, disk, network lagen@®perational (dynamic) behavior.
and bandwidth— and the load produced by other processes
running in the server or the number of concurrent requests.During the requirements analysis, it is the job of the soft-
For complex requests, this may also involve calls to externaare engineer to give appropriate values to each of the non-
systems, or to other subsystems, in which case the hogtiactional requirements according to the user's expeariati
internal network characteristics and other resourcesl tnay Each of these parameters needs to be reflected in one or more
be taken into account. architectural decisions and tradeoffs.

IV. MAPPING REQUIREMENTS TODEVAS Requirements in the request are realized in two phases:

The original implementation of the DEVA Manager acceptfsirSt’ the scheduling module of the manager chooses thettarge
sources so that the ensemble requirements can be met. This

three types of parameters: nodes (VMs and virtual networg>°,) ;
yp P (; plies selecting hosts with enough free memory and CPU for

devices), edges between nodes, and element annotaticsis. B VM d a th derlvi hvsical network will b
annotations describe node and edge characteristics suct'§sVMs and ensuring the underlying physical network will be

VM processor power or memory size, and link bandwidth anebb € to support the requested bandwidth and latency. Second
latency, respectively ' control measures are applied to constraint resource usage s

An application developer could map the assigned noH]atshared requests don't interfere among them. VM ressurc

functional requirement values to any of the discussed DE revsdjusted .by a \{[lrrltu?l Ma}[c::met Mm'tor ?uchkas Xen or
parameters in order to ensure the application’s operdtion are running in the target nost, while network resources

guarantees. For example, the number of desired requests Srcontrolled by a DEVA Agent. Agents apply shaping and

second would influence the assigned latency for the lin onitoring to manage netvyork QoS. . .
between VMs; alternatively, the targeted response timédcou In orde.r to |mplement high-level annotations representing
translate to a minimum processing power for the VMs in thréon-functlonal requirements, we need to extend the DEVA
ensemble. manager and agents so that the new parameters can be

However, this process is complicated and error-prone: tF]ré\nslated into the existing ones. Figure 2 shows the system

relationship between non-functional requirements and igychitecture with the new components in a darker shade.

level values is in many cases difficult to determine, anduliigfrt]é;?seir:Tt]:r\]/ZgI]fésntf\z?iatr? ;;aréil:;?der]rzg_f;?tfr?ﬂf rt(;-e
many factors can take part in the fulfillment of one indivitlua’ P

parameter. Thus, we propose an extension to our system Whﬁ%&%ugzgsz:iﬁijsihs\i/\riecﬁr;rvIgeo?cr:)%r:/-eflrjt?:“%?ﬂ-rlee ?/Lejllrigqu
non-functional requirements can be directly mapped to the 9 g hig

. . to low-level ones. For this, a Static Application Model is
execution platform, not only during the deployment phase, bem loved. Such model is dependent on the tvpe of application
also along the whole design process. ployed. Su ; P yp pplcat

and can be defined either theoretically or empirically. We

Our proposed approach in this paper extends DEVA an- .. .
notatior?s vF\)/ith newpr?igh—level vaIueg tEat correspond to-nonef'ne a global annotation for the request, where the user can

functional requirements. An underlying application-degbent spemfy_the application type. The value of this annotatioh w
L . . determine the model to use in the scheduler.
model is in charge of translating high-level parameterste | . .
; . . The Non-Functional Requirements Parser generates a set of
level ones, and performing the required operations on the . ;
:) . requirements for nodes and connections based on the tieshsla
appropriate elements. We describe our system design mekt, a .
; I . parameters, and these are fed to the scheduler, which takes
discuss its implementation. . : .)
them into account to generate a list of physical machine
candidates. Each of the candidates is assigned a number of
VMs to host. Finally, the Infrastructure manager, impleteen
oo in our system by OpenNebula [7], sends instantiation regues
Manitoring to Hypervisors and the DEVA Agents in charge of the dynamic
_ behavior of the application.
ynamic . . .
Felicae " After VMs are instantiated, DEVA Agents create a virtual
network in the hosting machines. In our proposed architectu
we extend the system by adding three new components in
the agents: First, we define an additional monitoring module
with application dependent rules. While the basic component
Fypervisor reads values such as CPU, memory and bandwidth usage, new
values need to be contemplated in order to track non-fumaktio
Fig. 2. Extended architecture requirements compliance. Examples of this are requests per
second for a web server or database transactions for a databa
server. The application-dependent monitoring module @n b
extended based on different applications. All agents skad t
Once the user defines a set of nodes, edges and annotatiomitored data to the DEVA Manager, where the data is
a request is sent to the DEVA manager, which parsesaiggregated to determine high-level actions.
and assigns the virtual resources to physical hosts that caifhe second change in the DEVA Agents consists in an Ap-
comply with the requested QoS parameters. At each hostplication Management module similar to the existing Networ
number of VMs and virtual network links are created so th&lanagement component. While the later one is in charge of
the ensemble appears as an isolated group of machines wligtermining low-level actions to maintain network QoS, the
dedicated resources. Additionally, a set of DEVA Agents arew subsystem needs to consider high-level requiremendts an
in charge of monitoring the infrastructure usage and engurisend them as an input to the other module. The third modifi-
global and individual QoS. cation of the agent, the Dynamic Application Model, prowde

DEVA Agent

Network
Management

DEVA Manager

= Infrastructure Application

Scheduler Manager Management

{]

Static
NFR t
Parser - Apmjcda;\lon

Parser

A. Processing annotations for DEVAs

the mapping based on a model of the application’s behavior.The first type of actions is decided and enforced by the
Contrarily to the Non-Functional Requirements Parser Ard tDEVA Manager based on the initial ensemble request and the
Static Application Model, the components in the agent canodel mapping. After parsing the user’s input, non-funciio
also consider the runtime state of the application. requirements are translated into a set of low-level QoSeslu
which can be in turn used by the scheduler component
B. Model-based translation of non-functional requirensent to assign virtual elements to physical infrastructure. ur o

There are two modules with the task of translating nori‘mple_mentatign in_[2], the scheduler exeches a metaftauris
functional —high level— to infrastructure or low-level re_algorlthm to iteratively choose a near optimal placement of

quirements. As stated in the last section, the first one cotn—e requested DEVA in the gvailable resources. This mapping
siders the static behavior of the application and provithes twou!d ensure that n_on-f_unctlonal reqwrem_e_nts are met by em
necessary criteria to the scheduler, while the second des taploylng the appropriate mfrz_istructure. AdditionallyetEVA .

into account the dynamic state of the application. There nager sends a description of the_ re.quesFed network I|nks
different approaches in the literature to modeling apfitica to each agent. Agents perform traffic isolation and shaping

performance such as [8] or [9], which can be divided int8perations on the physical links to multiplex their usag@agn
the categories of empirical theo,retical and on-line siatioh €nsemble members, and when needed, create tunnels between

models. physical hosts in different domains to build a virtual oegrl

The first category corresponds to those models creald work. . L
S ; . . owever, static allocation is not enough to respond to the
from the application’s off-line execution. Requirementnc

be inferred by observing the behavior of the system undréjrntlme behavior of the application. While some values can

different conditions and creating a model that can be ladedu be apphed dur_lng the instantiation phas_e, mo?t of the non-
to obtain approximate parameters to provide to the undglyifuncnonal requirements need to be considered in termseof th
lication’s dynamic usage. The DEVA agent is in charge

management system. These models are usually measure%?;)

. S) :) Yﬂomtonng the system’s running state and execute the
treating the application as a black-baxe(without employing . . .
. . . ; appropriate control mechanisms. In many cases, thesenactio
any knowledge of the internal implementation or design).

. . .ha]ve associated trade-offs which need to be considered. Ex-
The second category consists of creating a mathematical

Co o N amples of control mechanisms run by the agents are dynamic
model to relate the application’s characteristics to itpuiee- . . S -
. .) bandwidth or CPU adjustment, provisioning of additional VM
ments. In this case, knowledge about the internal implemen- o
L . S . instances or VM migration.
tation is used to quantify the application’s behavior based
available resources. V. EXPERIMENTAL VALIDATION
Finally, some models perform on-line (runtime) simulation In order to validate the proposed architecture, we have im-
of the application in order to find its behavior for a certaiplemented a prototype extending the original DEVA Manager
input. Simulations can be either event-based, for which amd agent. There are two main goals for this section:
abstract model is created to approximate the behavior unden) Demonstrate the feasibility of translating high-level,
certain conditions, or real-time, where a part or the whole non-functional requirements into a deployed ensemble
application is executed to predict how the real system would of VMs.
behave. 2) Show how high-level QoS requirements are met during
Our system does not make any assumptions about the a DEVA lifecycle.
models used to map non-functional requirements_to lowteve The experiment includes provisioning a test application
ones. In fact, any of these could be employed either for tgough the DEVA Manager in order to determine how a set of
static or the dynamic modules in the manager and the agemjgn-functional requirements defined through the requirgsme
The basic prerequisite is that the used model understangglysis phase can be fulfilled during runtime. We have devel

the application’s requirements and is able to determineoped a three-tiered web application to illustrate the pssce
set of values that can be expressed via DEVA annotations.

Some models may consider individual components of the The Chirper App'l|cat|on' N
system separately, while others contemplate complexisakat In our test scenario, an fictitious company wants to develop

between modules and how changes in one may affect othé#8. internal messaging systems so that their employees can
communicate without having to use third party applications

C. Non-functional requirements fulfillment They decide to deploy this solution in their private cloud so

The modules added to the system allow the translation tgf’i t they can take advantage of their in-house resources. Th

. . ! application, which we calChirper, stores profile information

non-functional requirements to low-level ones by using

L or users, and enables them to post short messages to a
application model. However,'the DE.VA Manager and agené%mmon virtual board and query others’ messages.
need to perfomﬁ the appropriate actions in or_der to fulfié th The application has two main components: the first one
requested requirements. We classify these actions in teasar is a web server running the CherryPpython web server:
resource allocation, and resource control. These catgalso '
correspond to static and dynamic management, respectively http:/iww.cherrypy.org

ChirperController . .
e tructure: maximum CPU share assigned to a VM, amount of
-db . . .
FageRenderer jiéﬁifiélmm : __DBManager memory, and bandwidth allocation between pairs of VMs.
T[S [ssabserueroota) I:;::ziziizsem .
+renderError (nsg) +addChirp(queryData) +addChi rp(chirpbata) B. Performance Modehng
endertaster() roertniree)

Once the application complies with the specified functional
requirements, a model is created to account for the expected
performance. In this example, a simple black-box model is
defined by benchmarking the application externally. We @gpl
both appliances in the private cloud, consisting of a cluste
of machines with Pentium 4 processors and 1 GB of memory
running the Xen 3.0 hypervisor, and a third VM to act as a user.

the second is a PostgreSDidatabase with the users ani?hysmal machines are interconnected with 1 Gbps ethernet

messages information. The application will be accessed fr nI|<s 'aTId a deﬂlc\?t'\jd. netwqu Sg”tCh' f 100% of th
the company’s intranet, nitially, eac is assigned a quota o b of the

As the first step, we perform the requirements eIicitatioﬁPU’ 1GB of disk, and 768 Mb of RAM. W? run the
to come up with the different functional and non-functiona(lN)""Che Benchmark tool to send 1000 requests with a level of

requirements. In this case, users need to be able to rngi%i%rpcurrence of 10 to the service for each tested configuratio
in the application through a form, and then query either erryPyh!s set uhp 0 spa\\;vvn 10 servmt?] threadst\f{_/lthout d
specific user entries or last 50 messages in the database RS caching mechanisms. e measure e request time an

focus on a subset of the typical non-functional requiretsmerﬁumbfer of requests served per.second for the operauon_of
explained in Section IlI: after exploring their users’ beioa, guerying the last 50 messages in the database. We consider

our fictitious company estimates that the application shbel CPU and bandwidth as the VMs’ configuration parameters.

able to respond to a peak of 40 requests per second, and Mgmory aIIo_cation was discarded since the applicationufoes
any request should be served in less than 500 millisecol@gu!ré & high amoun:c of main memory and consequently
through the internal network. its performance doesn’t depend on this parameter (our tests

In the second step, we define the application’s architect gmonstrated 40 Mb were enough for the application to

and implement it. In our approach, we follow the ModeI-VieW-unCtlon at maximum capacity).

Controller (MVC) architecture: a front-end interface wéer. In the first set of runs, we calculate the application’s behav

the user can interact with the system, a controller to subnfif depgndlng on the CPU quota. After running the tests, we
termined that the Database appliance is not CPU bound, and

and request data to the database, and the database laffer i%% ¢ there i diff ; ‘ ith ciffe
Figure 3 shows a class diagram of the system. The applicatf refore, there IS no difierence in performance wi
ues. Figure 4 shows the number of handled requests per

receives requests through different URLs, which are mapp 4 and the mill ds taken f h ¢ when th
by ChernyPy to the appropriate funciions in the ChIPeRS oy coroor e web appliance is changed from 25%0
: : b
Controller object. This class handles each request sema,ratloo% in intervals of 25%. As the figure shows, the number of

performing input validation, then retrieving the requéste d ¢ dis directl tional to @8 C
information by calling the DBManager class, and finall;?erve requests per second Is directly proportional to

rendering the response through the PageRenderer insme.allocation, while th_e time taken to respond to each request
DBManager uses the SQLObjéDbject-Relational Mapping decreahses with da h|ghefr CPU quota. | h i
(ORM) library to access the PostgreSQL database and perfor \S t € secon _set 0 _measurements, we explore the appli-
selection and insertion operations. Finally, the PageBwnd cation’s behavior in relation to the allocated bandwidthere

class has methods to produce HTML code to return to t e two links considered in this benchmark: the incoming
user connection to the Web appliance, and the private connection

In order to simplify scalability and be able to assign phylsic!inking it to the database. Each of them can be constraindd an

resources separately to each of the components, the web ' I%ated independently by the DEVA agents in the hosting ma-

database servers are deployed as different Virtual Apgdign chines. By doing this, each D_EVA can _perform md_epe_n Qently
%f_ the rest, and network traffic from different applicatiass

Each of the VMs runs CentOS 5.3 and the software requir ted that diff £ VM ltinlex the phvsical
ments needed by the application, which consist of Python gparated so that diierent VIVIS can multipiex the physica
nnel. We test the application with symmetric network

and CherryPy 3.2 for the Web appliance, and PostgreSQL R ts 4 : . d outaoi ¢ f
for the Database appliance. When the VMs are provisioned"’} signments +€. same incoming anad outgoing rate— from

the cloud, the DEVA Manager is able to define the resour& 0 Kb/s to 500 Kb_/s with increments of 100 Kb/s. I_:l_gure 5
allocation by sending commands to the VM Hypervisor an ows the results In requests per seconds ano! milliseconds
the DEVA agents. There are three main parameters that &g request for the incoming linkin) and the private one

be configurable once the VMs are instantiated in the infra%c-mne_Ctlng both VMsriv).
As it can be observed, the number of served requests per

2http:/Awww. postgresq].org second depends on the available bandwidth, up to approxi-
3http://Awww.sqlobject.org mately 550 Kb/s for the incoming link (not shown in the graph)

Fig. 3. Chirper class diagram

70 T T T 120 70 T — 120
regs/s —— . regs/s (in) ——
| ms/req - 1 ms/req (in) -
60 1 100 60 regs/s (priv) - 1 100
regs/s (priv) e
50 50 &
L 80
(&) o (8] o
g A0 £ 2 £
2] 2]
o 3 o @
L 0]
g 30 2 & =
20
10
0 1 1 1 1 1 1 1 0 O 1 1 1 0
20 30 40 50 60 70 80 90 100 100 200 300 400 500
CPU % BW Kb/s
Fig. 4. Application model according to Web Appliance CPU edition Fig. 5. Application model according to Incoming and Privatendwaidth
allocation

and 400 Kb/s for the private link. Lower bandwidth results iglouds: additional non-functional requirements such ast-fa

reduced requests per second and higher response time. tolerance, execution cost or security need to be considered
and improved models that are able to predict applicatioas’ p

C. Integrating the model with the DEVA manager formance considering different parameters such as progess

The final step consists of integrating the experimentglemory, network and disk usage have to be developed.
performance model into the DEVA manager and making the VIl. ACKNOWLEDGEMENTS

appropnat_e changes so that user requests can -specn‘y hlghI=his material is based upon work supported by the National
level requirements as parameters. We add the logic to &tens|

N - Science Foundation under Grant No. OISE-0730065.
such submission into low level parameters by employing

the models and specifying an additional global parameter, REFERENCES
applicationType="Chirper’'so that the DEVA Manager Knows[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
which model to apply. A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,

; I. Stoica, and M. Zaharia, “Above the clouds: A Dberkeley
After that, we test the system by sendlng a request to view of cloud computing” Feb 2009. [Online]. Available:

the DEVA Manager specifying the two described Virtual http://mww.eecs.berkeley.edu/Pubs/TechRpts/20098=E@09-28.html

Appliances and the desired non-functional requirements [gF D. Vilegas and S. Sadjadi, "DEVA: Distributed ensemblef virtual
appliances in the cloud,” iRroceedings of the 17th Euro-Par Conference

40 requests per second and 500 ms of maximum response q-par 2011) 2011.
time. The manager identifies this request to instantiate tf3® L. Youseff, M. Butrico, and D. Da Silva, “Toward a unifiechtmlogy

Chirper application, and translates the requirements to 75% g g'ougacggc‘)%utingf’ i”ng Computing Environments Workshop, 2008.
. E’ , pp- 1 -10.
of CPU for the Web appllance and 25% of CPU for th] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:estdtthe-art

Database appliance, 64 Mb or RAM for each VM, 500 Kb/s and research challengesidurnal of Internet Services and Applications
for incoming bandwidth and 400 Kb/s for private bandwidth, Vol 1, pp. 7-18, 2010, 10.1007/s13174-010-0007-6.

. C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, Bo®, M. S.
Finally, it decides that both VMs can be assigned to a smg[% Lam, and M. Rosenblum, “Virtual appliances for deploying andian-

physical machine and provisions them accordingly. ing software,” inProceedings of the 17th USENIX conference on System
administration Berkeley, CA, USA: USENIX Association, 2003, pp.
VI. CONCLUSIONS ANDFUTURE WORK 181-194.

[6] L. Chung and J. do Prado Leite, “On non-functional regmients in

As the cloud becomes more mainstream as a method to hostsoftware engineering,” i€onceptual Modeling: Foundations and Appli-
cations ser. Lecture Notes in Computer Science, A. Borgida, V. Chaud

appll_catlons, d_evelopers will _need to _COﬂSlder how d'_mre P. Giorgini, and E. Yu, Eds. Springer Berlin / Heidelberg020vol.
providers —or in-house solutions— will be able to fulfill the 5600, pp. 363-379.

final users’ needs. Similarly, providers need to be able tg B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Fost&/rtual
infrastructure management in private and hybrid cloutBEE Internet

give reliable guarantees for the Quality of Service of safv ;5 ing vol. 13, pp. 14-22, 2009,
deployed on their infrastruture. In this paper, we additssp] C. Stewart and K. Shen, “Performance modeling and systenagement

this problem from both the developer’s and cloud provider’s for multi-component online services,” iAroceedings of the 2nd confer-
ence on Symposium on Networked Systems Design & Impleioentat

perspectives. _\Ne showed how an example application V_’ith Volume 2 ser. NSDI'05. Berkeley, CA, USA: USENIX Association,
concrete requirements can be developed and deployed in a2005, pp. 71-84.

cloud manager that takes high-level non-functional resguirl® S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J.ddelgH. Du-
ts int id fi ran, and X. Collazo-Mojica, “A modeling approach for estimgtiexe-
ments INto consiaeraton. cution time of long-running scientific applications,” Rarallel and Dis-

However, there are still many issues to address in order tributed Processing, 2008. IPDPS 2008. IEEE InternatioSBgmposium
to determine how software can be successfully deployed in ©n 2008, pp. 1 -8.

