
New Metrics for Scheduling Jobs on a Cluster of Virtual Machines

Yanbin Liu, Norman Bobroff,
Liana Fong, Seetharami Seelam

IBM T. J. Watson Research Center
{ygliu,bobroff,llfong,sseelam}@us.ibm.com

Javier Delgado
Florida International University

{javier.delgado}@fiu.edu

Abstract—As the virtualization of resources becomes popu-
lar, the scheduling problem of batch jobs on virtual machines
requires new approaches. The dynamic and sharing aspects of
virtual machines introduce unique challenges and complexity
for the scheduling problems of batch jobs. In this paper, we
propose a new set of metrics, called potential capacity (PC)
and equilibrium capacity (EC), of resources that incorporate
these dynamic, elastic, and sharing aspects of co-located virtual
machines. We then show that we mesh this set of metrics
smoothly into traditional scheduling algorithms. We evaluate
the performance in using the metrics in a widely used greedy
scheduling algorithm and show that the new scheduler im-
proves job speedup for various configurations when compared
to a similar algorithm using traditional physical machine
metrics such as available CPU capacity.

I. INTRODUCTION

The job scheduling discipline assigns work (e.g. batch
jobs) to compute resources, matching job requirements to
the capabilities and capacities of the resources. Traditionally,
jobs are assigned to physical compute platforms. The recent
trend is to expose the physical compute platform through
one or more virtual resource containers, each providing an
abstraction of the underlying resources. The most common
example of a virtual resource container is the virtual machine
(VM), first developed in the late 1960’s [1] as a mechanism
for timesharing a large system among many clients. The VM
provides application isolation, and enhances and simplifies
the administrative task of apportioning resources to jobs,
when compared to the multiprogramming model where
operating system controls are used to provide these functions
but without complete process isolation.

The virtual container environment increases the complex-
ity of the scheduling problem by extending the configuration
options that control how a physical resource is exposed to
the resource management system. Virtual containers, with
VM as one example, provide a more complex target for the
job scheduler than physical platforms with fixed capacity
and a well studied utilization model.

Figure 1 provides an overview of scheduling jobs into
multiple physical machines that host a single layer of con-
tainers, while multiple layers and heterogeneous resources
are possible. In these virtualized computing systems, a
container manager presents to each hosted VM an image of
the compute resources of the underlying physical machine.

Physical Compute Platform A

Virtual Container
Manager

Virtual
Container

Virtual
Container

Virtual
Container

Job Queue

Physical Compute Platform B

Virtual Container
Manager

Virtual
Container

Virtual
Container

Virtual
Container

Job Scheduler

Figure 1. Virtual Container vs Physical Container Scheduling

Resources include processors, CPU cycles, memory, net-
work, and I/O bandwidth which are apportioned to each VM
image by the container manager according to VM attributes
defined by the system administration and current demand.
Unlike physical machines, the capacity or maximum amount
of a resource, such as compute resource, that a VM can
obtain is typically a dynamic variable. In addition to current
demand, actions such as shutdown or start-up of other co-
located VMs or migration to or from another physical host
also lead to variable capacity.

In the job scheduling discipline, it is common to apply
algorithms that rely on an estimate of free resources on the
target compute nodes that are physical compute nodes with
fixed capacity. In this paper, we consider how to get an
accurate estimate of dynamic capacity of a VM particularly
for CPU cycles. We introduce the concept of potential and
equilibrium capacity, which leads to a derived set of dynamic
container capacity metrics that prove to be useful in job
scheduling.

In the world of dynamic provisioning and growing inter-
est in cloud computing, the VM is a convenient unit for
administrators to provision and timeshare physical compute
resources among customers. The VM packages computing
power with administrative flexibility (e.g. provisioning from
a library of assembled images), suspend, checkpoint, mi-
gration, and flexible controls over sharing and managing
the limited resources of the underlying physical platform.
Therefore, the study of VM scheduling is an important
research area. The related work in section IV summarizes
several studies in virtualization related topics, but analysis
of job scheduling in a virtualized environment is still in its
infancy. Our paper addresses the topic of job scheduling in
virtualized environment and the contributions are:

• a set of novel capacity metrics for virtual resources
managed by virtual container managers

• a methodology for estimating the values of the new
capacity metrics

• an illustrative use of the new capacity metrics in job
scheduling

• a study of the impact of using dynamic capacity metrics
in job scheduling via simulation using two real work-
load traces

II. NEW METRICS FOR JOB SCHEDULING ON VIRTUAL
CONTAINERS

Most traditional batch workload schedulers use a resource
metric – typically free processor capacity – to assign jobs
to compute nodes. For a physical machine with a fixed
capacity, schedulers estimate the free processor capacity
straightforwardly as the difference between the total capacity
and the current utilization. Further, these schedulers use a
greedy heuristic to assign jobs to nodes. For example, an
algorithm may select the nodes with the most free processor
capacity to assign a job.

Estimating the free capacity of a virtual container is non-
trivial because of the elastic, dynamic, and competing nature
of the virtual containers co-located on a single physical
machine. The free capacity of a virtual container refers to the
compute cycles that the underlying virtual container manager
would allocate if a new job were to run on the virtual
container. This capacity depends on a number of factors,
including the load of the virtual container, the utilization
of all virtual containers in the parent physical machine, the
sharing model of the co-located virtual containers and their
parameters. To estimate it, a new set of metrics are proposed
that reflect the sharing model of co-located virtual containers
on the underlying physical machine. These metrics are used
in new scheduling algorithms to optimally assign batch jobs
to virtual containers.

A common resource sharing model of virtual containers
that permits elastic and dynamic capabilities is described
next. In this section, we use the terms virtual and physical
containers instead of virtual and physical machines to show
the generalization of the model. Then, we will use virtual
machine (VM) and physical machine (PM) in later sections
for our experiments on a specific platform.

A. Resource sharing model
The resource sharing among virtual containers in a phys-

ical container is managed by the container manager or hy-
pervisor. A general model is adopted by container managers
to apportion resources to the virtual containers that share a
common resource pool with a fixed capacity. That is, each
container has parameters that specify the range of platform
resource it can take, and how excess capacity is shared
among virtual containers under contention. These resource
sharing parameters are:

1) min - container is guaranteed at least min capacity
when it has a workload to run.

2) max - total utilization of a container cannot exceed
the max, even if free capacity is available.

3) share - competing containers are allocated excess
capacity in proportion to their share.

This resource sharing model is the most common one
and several variations to this model are realized in virtual
container controllers including IBM hypervisor [2] and
VMWare [3]. This simple model allows us to explain the
intricate aspects of batch job scheduling without being con-
strained by the product specific aspects of these hypervisors.

These parameters are explained with reference to Figure 2.
Figure 2(a) shows a virtual container A hosted on a physical
platform with a unit capacity (e.g. CPU capacity). The three
parameters described above are shown in these figures with
sample values. The min=0.25 is the guaranteed physical
capacity assigned to A. The max=0.67 is the maximum
physical capacity that container A would be allowed to use
for its jobs. When min=0 and max=1, container A is al-
lowed to exploit the full capacity of the parent container but
at the same time it may not get any capacity when there is
contention from other containers sharing the parent platform.
To avoid this situation, it is common to set min> 0. The
third sharing metric is described with the help of Figure 2(b)
which shows two containers A and B.

Figure 2(b) shows container B with a min=0.1 and
max=1.0. The share of A is 4 and the share of B is 8.
Containers with a higher share get higher priority under
resource contention. Each container is guaranteed its min
capacity. The remaining capacity, i.e., the capacity in excess
of the guarantees to A and B, are apportioned to each
container based on their share. In this example, the excess
capacity 1 − (0.25 + 0.1) = 0.65 are apportioned 4

12
= 1

3

to A and 2

3
to B. Accordingly, the total capacity of A

consists of its min (0.25) and its share from excess capacity
0.65∗ 1

3
, making it 0.46, while B gets 0.1+0.65∗ 2

3
= 0.54.

The apportioned capacities are smaller than their assigned
maximum, therefore they do not need to be re-computed as
described later.

In the presence of multiple containers with different
parameters that host jobs with finite CPU demands, the
estimation of the free capacity using the described sharing
model becomes more complex. To systematically estimate
the capacity, we first introduce a new metric called equilib-
rium capacity (EC).

B. Equilibrium Capacity (EC)
Container Equilibrium Capacity (EC) is the worst case

guaranteed capacity that a container would be allocated
when every co-located container competes for its fair share.
EC is a container property derived from the sharing policies
implemented by the container manager. It is independent of
dynamic system parameters such as current workload and

Virtual
Container A

Potential capacity

Platform capacity = 1.0

Min=0.25 Max=0.67

(a)

Container A
(Share=4)

Potential capacity

Platform capacity = 1.0

Min=0.25 Max=0.67

Container B
(Share=8)

(b)
Figure 2. Features of container resource sharing

utilization. A simple expression to compute this metric is
ideal but no such expression exists and this section describes
the recursive algorithm to compute this for arbitrarily com-
plex situations.

Consider a set of containers V M1, . . . , V Mm that com-
pete for a fixed capacity pCap of the underlying platform
PM . The container equilibrium capacity (ECi), where
1 ≤ i ≤ m of a container V Mi is the amount of the
shared resource that a container can receive when there is
full contention from all competing containers.

To explain the concept and illustrate the computation
issues of EC, Figure 3 shows the capacity available to two
competing containers on a shared platform.

Consider the simple case when competing containers have

equilibrium
point

Max’B

max’A

maxB=1

equilibrium
point

maxA=0.67 pCap

pCap

1
Container A utilization

C
ontainer B utilization

X

Y

ECA

ECB

(a) (b)

Figure 3. Container Equilibrium Points

min ≥ 0 and max = pCap. The computation of EC is
straightforward,

ECi = mini +
sharei∑m

k=1
sharek

pCap′, (1)

where pCap′ = pCap −
∑m

k=1
mink and 1 ≤ k ≤ m.

That is, each container gets its minimum capacity mink

plus a proportion of the excess capacity pCap′, where the
proportion is decided by the ratio between its share and the
sum of the share of all competing containers.

Applying the above expression to containers A and B in
Figure 2 results in ECA = 0.46 and ECB = 0.54. This
is the same value derived in the previous section but this
expression can be applied to multiple containers. In this
case, the EC of both A and B is smaller than that of their
corresponding maximum values as shown in Figure 3(a).

This straightforward calculation breaks down when some
containers’ equilibrium capacity calculated using the above
expression is larger than their max parameters. This means
that the calculated EC is not a valid estimation of the capac-
ity of those containers. Consider the two-virtual-container
example and Figure 3(b). Now assume that the max param-
eter of B, max

′

B is lowered so that it is smaller than its
equilibrium capacity (max

′

B
< ECB). Since a container

is not allowed to consume more capacity than its max
parameter, its equilibrium capacity should be constrained by
the max parameter. As result of this new constraint, container
A can get more capacity than was estimated above.

More formally, when ECi ≥ maxi for container i, the
difference d = ECi − maxi is the capacity this container
cannot use and therefore its ECi = maxi. The difference
d should be summed up for all such containers and redis-
tributed among the other containers whose ECi < maxi.
When this calculation is repeated to distribute this excess
capacity, it may happen that some containers get more
capacity than their maximum. As a result the procedure
needs to be repeated until no container has a EC bigger
than its max value.

Now referring back to Figure 3(b), following equation 1,
at first the equilibrium point is the top-left point, X . Because
the calculated value EC2 > max2, we shall set ECB =
maxB and recalculate ECA with container A sharing the
excess resource 1 − maxB by itself. Thus, the equilibrium
point moves to the point Y on the right. However, we have
ECA > maxA at point Y . Thus, we repeat the procedure
and set ECA = maxA. The equilibrium point finalizes at
the point in the middle. For this example, there is excessive
capacity for the system that can not be used by neither A nor
B. The complexity to compute the EC converges to O(m),
where m is the number of co-located containers.

The main insight is that EC is a lower limit, which is
larger than min, of the amount of the platform resource
that is guaranteed to a container. Although EC seems like
promising metric to use for scheduling jobs, since it is a

Utilization of A (uA) PC of B (PCB)
uA ≤ ECA max{pCap − uA, maxB}
uA > ECA ECB

Table I
PC CALCULATION FOR 2 CONTAINER EXAMPLE

pessimistic estimate, scheduling based on it does not result
in optimal system utilization. Therefore, we need additional
metrics that provide optimistic bounds on the achievable
performance.

C. Container Potential Capacity (PC)
The container potential capacity (PC) is the maximum

amount of the underlying platform resources that a container
can receive in a system state. Unlike EC, PC is dependent
on the system state, such as the current utilization of the
competing containers.

We illustrate the concept of PC through examples. Let
two containers A and B share and compete for a fixed size
platform resource pCap. Let ECA and ECB be their EC.
Recall that EC defines the amount of resource a container
should get with full contention. Let uA and uB be their
current utilization.

Next, we analyze how much resources container B can
receive in the example. Consider the case where A uses less
than or equal to its entitled amount. That is, its utilization is
less than or equal to its EC, i.e., uA ≤ ECA. In this case,
B can grab the remaining capacity pCap − uA with only
the limit of maxB , making it max{pCap− uA, maxB}. In
the other case, when A uses more than its entitled amount
uA > ECA, which is possible when B does not have enough
workload and has uB < ECB . Then, if necessary, B can
take resource from A and force its utilization to decrease
to its equilibrium capacity ECA. Thus, B can receive its
own equilibrium capacity ECB since it is a full contention
situation. By the above discussion, we show the value of
PCB in Table I given the utilization uA.

In summary, the actual capacity a virtual container is
allocated is at least its EC and at most its PC. While EC
is a fixed property of the container depending on resource
sharing model and sharing parameters, PC also depends on
the dynamic system state. As co-located virtual containers
become heavier loaded, PC tends towards the EC.

III. APPLICATION TO SCHEDULING PROBLEMS

One way to measure the significance and effectiveness of
the new metrics described in the previous section is in their
application to traditional batch job scheduling problems, but
where the compute nodes are VMs using a shared resource
model. Though we now assign jobs to VMs, the scheduling
objective is still that we either (a) maximize throughput
and/or (b) minimize the response time of jobs relative to

their execution time when they have exclusive access to the
resources.

The exclusive model, in which the number of concurrently
active jobs in an OS image is unity is widely used, especially
for HPC applications. The advent of multi-core processors
motivates a return to increased job or task concurrency to
improve the utilization of these resources. However, the
method by which multiple jobs are executed on physical
nodes is likely to be through the shared VM model of
Figure 1. In this model exclusivity applies at the VM level,
i.e. a VM is either free or hosting a single job.

The batch scheduling studies presented here are relevant
to two classes of jobs; serial or single task jobs, and
loosely coupled parallel jobs, also called embarrassingly
parallel jobs. In the latter, the component tasks have no
synchronization interactions and proceed independently of
each other. Implementations such as Hadoop often design
tasks that proceed independently, pulling work from a central
queue until the queue is exhausted. As with serial jobs, the
tasks benefit from greedy approaches to scheduling studied
here.

In contrast, tasks in many HPC applications have syn-
chronization barriers and proceed in lockstep. This means
the job progress is limited to that of the slowest task
and assigning job tasks greedily leads to unused cycles on
the most powerful nodes. Scheduling algorithms for tightly
coupled applications is left to future work.

A. Applying PC and EC Metrics to Scheduling

The two metrics PC and EC are evaluated by using each
of them as the primary heuristic of a greedy scheduling
algorithm. The corresponding algorithms are referred to as
the EC Algorithm and PC Algorithm for the remainder of
the paper. The procedure of assigning a job to a VM using
each algorithm is illustrated in Figure 4. Here, the ith VM
on a machine A is denoted as Ai. The VMs which are free
to accept jobs are sorted in descending order of the EC or
PC metric.

The VM selection process for the EC algorithm (Fig-
ure 4(a)) is straightforward because EC is a fixed property
of a VM so that starting or terminating a job on a collocated
VMs does not change the EC values. Each arriving job is
assigned to the first VM from the sorted EC list using the
First Come First Serve (FCFS) policy. Because there is no
secondary metric to break ties between VMs with identical
EC it is possible for contiguous sequences of VMs on a
common PM to have the same rank. This situation leads
to collocation of jobs on the same PM which limits the
extent to which VMs can borrow unused machine CPU
cycles. Intuitively, this situation is only expected at low
utilization where the physical machines are unoccupied. In
our investigations (e.g. Figure 7) this is only a consideration
with cluster utilization less than a few percent.

!
"

#
" !

$

0

5

10

15

20

25

0 2 4 6 8

EC

Rank

%
"

&
"

'
"

Task assigned to A1
EC of A3 unchanged

(a)

0
20
40
60
80

100
120

0 2 4 6 8
Rank

PC

!
"

!
!

"
#

$
#

%
#

&'
!

Task assigned to A1
PC of A3 updated

(b)
Figure 4. VM ranking order for scheduling algorithms using (a) EC and
(b) PC

The PC algorithm of Figure 4(b) is more complex than
EC because job start or termination events changes the PC
metric of collocated VMs. This is indicated in the figure
where assignment of a job to A1 causes a change in the PC
of A3. Because of the new assignment, PC of the co-located
VM A3 is reduced. As a result, VMs C1 and D1 are better
choices than A3. When multiple VMs have identical values
of PC, the EC metric is used as a secondary sort criteria in
addition to PC. This makes sense because EC is a guaranteed
lower bound on the CPU allocation a VM receives under
contention, while PC is the achievable upper bound with
current system state. When two VMs have identical PC the
one with the higher EC is expected on average to provide
more cycles to the job. The value of (PC - EC)/EC for a VM
is loosely interpreted as a measure of the risk of slowdown
for currently running jobs when the system is busy. Thus
A1 is ranked first over B1 even though their PC is equal,
because A1 has a higher EC (as shown in Figure 4(a)).

As an example, suppose three jobs are submitted to a
system containing the resources shown in Figure 4(b). The
first job to arrive is assigned to A1, the second to B1. After
assigning a job to A1, the PC of A3 is reduced and its new
rank is represented as A′

3 as indicated in the figure by the
dashed line. Consequently, the third highest ranking VM is
now C1 and so the third job to arrive is placed in C1. A
similar reordering of the rankings of the VMs occurs on job
completion events, which also triggers a re-evaluation of the
PC of collocated VMs.

Intuitively, the PC algorithm leverages the advantage of

the elasticity and fair partitioning inherent to VM resources
by capturing the dynamic capacity available to each VM.
The EC algorithm supports the elasticity and is aware of
the partitioning, but since the EC metric is unaware of the
instantaneous capacity of the VMs, it is inferior at selecting
the VM that will finish the job fastest.

B. Simulation and Evaluation Criteria
The PC and EC algorithms are compared using event

driven simulation. Two workload traces are used, the Grid
5000 trace from the Grid Workloads Archive [5] and a
second trace from the Cornell Theory Center (CTC) [6].
Trace characterization is available at the sites referenced
above; the main difference between the two traces is that
CTC jobs have a wider and longer range of run times than
Grid’5000 jobs. Both traces include a mix of single node
and parallel jobs, but the studies here use only the single
node jobs. Where noted, the inter arrival time of jobs is
uniformly scaled to increase the range of average cluster
utilization over which algorithm performance is studied
without modifying the characteristics of the jobs themselves.

The trace data contains job run time, but not the actual
CPU demand of the jobs. (i.e. the run time reported in the
trace tells us the wall clock execution time on the system
that originally executed the job.) In a real system the CPU
demand is not usually known to the scheduler until the job
begins executing and the resource manager reports CPU
utilization information. In traditional systems with a single
job per physical node this issue is not relevant. We make the
conservative assumption that each task is CPU intensive and
therefore uses the full potential capacity available to it until
it completes1. We also assume that there is an inverse linear
relationship between CPU allocation and execution time.

The data center modeled assumes all VMs have equal
share values and the CPU limits are set to min=0, max=1.
Each PM contains 4 VMs, thus EC=0.25 and PC=1 when
no jobs are running on collocated VMs. We use a cluster
size of 30 PMs to provide an average cluster utilization
for the traces of around 50%. Apart from showing which
algorithm is better at maximizing available resources, the
average cluster utilization determines how much room for
improvement there is. For example, if the cluster is fully
utilized, the throughput of jobs will suffer for all algorithms.
Any time a job is assigned to or released from a VM, the
states of all active VMs residing on the PM of said VM are
adjusted. (i.e. the PC of the VMs and the CPU utilization of
active jobs are recalculated.) Other global cluster statistics,
such as overall cluster utilization, are collected at these
events as well.

Scheduling performance is measured using average (sys-
tem) utilization and average (job) expansion factor2 (XF).

1For parallel jobs, there is the additional issue of task synchronization,
but we leave that discussion for future work

2XF is often referred to as “makespan” or “stretch”

The average utilization is the average overall CPU utilization
of the cluster from the first job arrival until the final job
completion. XF is essentially the ratio of a job’s actual
run time to its ideal run time; the ideal run time is the
time it would take the job to execute if it were to run in
isolation. Equation 2 shows the basic formula. The total job
completion time used in the XF calculation has components
from queuing (queueTime) and execution time expansion
(actualRuntime). The normalized difference between actu-
alRuntime and idealRuntime reflects the elasticity caused
by sharing of resources among virtual machines. In a real
system it would also include platform overhead which grows
with the number of VMs/PM, but modeling the platform
overhead is a topic we leave for future work.

XF =
(queueT ime + actualRuntime)

idealRuntime
(2)

To reduce the bias of XF for jobs of short duration, where
short delays cause a large XF, the “bounded slowdown”
method described in [4] is applied. Short running jobs are
given a minimum idealRuntime to avoid small execution or
queuing delays to result in large values when calculating the
XF. Hence, the formula used for our experiments is shown
in Equation 3. We use a threshold of 10 seconds.

XF =
(queueT ime + actualRunT ime)

max(threshold, idealRuntime)
(3)

C. Results

Figures 5 and 6 compare the ratio of XF for EC to PC
(XF ratio) for the first 10,000 serial jobs of the Grid’5000
and CTC traces. This corresponds to about 154 and 103
days of job submission data, respectively. For the average
expansion factor figures, the data are binned into equal time
intervals and each data point represents the average XF of
all jobs in that bin. The utilization varies according to the
intensity of arrivals and state of the cluster and ranges from
0 (idle) to 1 (full utilization) in this trace segment. The PC
metric performs approximately 2 to 4 times better than EC
over the trace. The runtime contribution to the XF (i.e. the
slowdown due to resource sharing) is expected to be between
1 and 4 for the homogeneous cluster model when there is
little or no job queuing. This is because the EC algorithm
has a tendency to pack jobs onto the same PM due to its
lack of knowledge of the true dynamic capacity of the VMs
residing in the PM. So depending on the current state of
job assignments in the cluster, EC has a larger chance of
assigning jobs to collocated VMs where they may receive
as little as 1/4 as many CPU cycles. The utilization data of
all figures are from the runs of the PC metric and are within
a few percent of the EC numbers. This result is somewhat
surprising given the difference in XF. However, consider a
simple scenario in which a 1 second job is dispatched on
a single machine followed by a 10 second job. The total

0.00

1.00

2.00

3.00

4.00

0.00 50.00 100.00 150.00 200.00
time(days)

XF
 R

at
io

 (E
C/

PC
)

0.00
0.20
0.40
0.60
0.80
1.00

0.00 50.00 100.00 150.00 200.00

Time(days)

Ut
il

Figure 5. Ratio of XFs(top) and utilization (bottom) as function of job
arrival time for Grid’5000 trace.

0.00

0.50

1.00

0.00 50.00 100.00

Time(days)

Ut
il

0.00

1.00

2.00

3.00

4.00

0.00 50.00 100.00

Time(days)

XF
 R

at
io

 (E
C/

PC
)

Figure 6. Ratio of XFs(top) and utilization (bottom) as function of job
arrival time for CTC trace.

execution time is 11s and the XF of the jobs is 1 and 1.1
respectively. dispatching the jobs in the reverse order now
causes an XF of 10 and 1 for the short and long job.

In the asymptotic conditions of low and high utilization,
similar performance is expected from PC and EC. At low
cluster utilization, the PC and EC algorithms should perform
similarly. However, since EC performs no load balancing
(i.e. selecting VMs on different PMs) it performs worse
than PC even under very low load conditions. With n VMs

!

"

#

$

%

&

'

! !(# !(% !(' !() "

*+,-,./+,01

2
3
45
/
+,
0
46
7
8
9:
8
;

Trendline

Figure 7. Ratio of XFs as function of average cluster utilization

per PM the frequency of occurrence of jobs assigned to
collocated VMs falls as the utilization drops below 1/n.
As cluster utilization approaches 1, the VMs on each PM
are generally occupied, there is little resource sharing, and
all jobs receive the EC proportion of CPU. For other
utilization’s the queuing element of XF can play a role
depending on the details of job arrivals and execution time
and the intricacies of the scheduling algorithm.

In figures 5 and 6, the relationship between utilization and
XF ratio is unclear. This is because the utilization depends
on multiple job- and system- related properties. Also, the
figures do not show the effect of queuing. In some cases,
even when the utilization for both algorithms is almost the
same, their expansion factors may vary greatly due to the
XF bias for small jobs. e.g. if one algorithm queues a short-
duration job and the other a long-duration job, the former
will have a much higher XF.

Our hypothesis about the relationship between utilization
and XF ratio are studied more in the experiments of Figure 7.
Here, the average cluster utilization is varied by multiplying
the inter-arrival times of the CTC trace by factors of 0.5,
0.55, 0.75, 1, 1.25, 2, and 16. This allows comparison of
PC to EC as a scheduling metric under different intensity of
job arrivals. The ’trend’ line in the figure shows the intuitive
expectations of the XF ratio discussed above. Generally the
XF ratio improvement is less than 4 as expected for runtime
expansion, but the data at util=0.65 (trace compression of
0.75) showed an XF ratio improvement for PC of 4.7. Closer
inspection reveals that this is due to 3 intervals during
the simulation in which the EC algorithm queued over 20
jobs while the PC algorithm did little or no queuing. As
previously mentioned, the performance of the two algorithms
should be the same at low utilization. However, since the EC
algorithm tends to pack jobs on the same PM, utilization
would need to be very low (i.e. under 3%) to reach this
point. Instead, we used an EC algorithm with load balancing
for the left-most point in Figure 7.

IV. RELATED WORK

Virtualization is a popular subject of research and ex-
perimentation in the last few years with the maturing of
software and hardware support. While there is concern on
the overhead of virtualization, the emergence of clouding
computing propels new interest of virtualization for batch
applications in addition to web service transactions. Studies
of the impact of virtualization to data-centers includes [7],
[8], [9]. Unlike these works, we introduce a new set of VM
capacity metrics and study applicability to job scheduling of
computing resources in clustered environments.

Evaluation of job scheduling requires representative work-
loads of large data-centers. Feitelson pioneered building
archives of workload traces from different HPC sites with
large clusters [10]. The research group at the University
of Delft have collected another set of workload traces from
the grid communities [5]. The workload traces are used
widely by job scheduling researchers and engineers. Our
paper also used the traces from these collections as input to
our simulation, though these workloads represented input to
job scheduling systems with physical resource requirements.
Moreover, it is important to note that we filtered out all
parallel jobs from the traces. Serial jobs are prominent in
commercial workloads. However, most commercial work-
load traces are not readily available for research propose.

The solution presented in this paper is not specific to
a particular virtualization technology; it uses the generic
constructs for partitioning resources into virtual entities
using virtualization technologies such as provided by IBM
PowerVM [2], VMWare [3], Citrix Xen [11] and KVM [12].

There are few studies on the placement algorithms and
performance of virtual machines mapped to physical ma-
chines [13], [14], [15]. Particularly, the work by Still-
well [16] et al. addresses some scheduling issues. Stillwell’s
work proposes new online job placement methods based
on current CPU utilization and memory occupancy using
Multi-Capacity Bin Packing (MCB) algorithms. The job
placements are then augmented by periodic preemption and
migration to address workload imbalance. Unlike previous
work, we focused only on job placement. More significantly,
as far as we know, we are first to propose a set of new
metrics in estimating the dynamic potential capacities of
virtual containers and use these metrics for job placement.

V. CONCLUDING REMARKS AND FUTURE WORK

Virtualization offers improved resource utilization by al-
lowing sharing of resources among virtual containers. This
sharing makes system state more dynamic, so batch job
scheduling algorithms need to account for this dynamic
system state. Two new metrics, potential capacity (PC)
and equilibrium capacity (EC), of resource capacity that
incorporate the dynamic, elastic, and sharing aspects of co-
located virtual containers is introduced for the first time.
Greedy scheduling algorithms are developed based on these

two new metrics for efficient job placement and to achieve
optimal system utilization. We show by simulation that
the algorithms based on the new metrics can improve the
resource utilization and reduce expansion factor for serial
batch jobs selected from the Grid’5000 and CTC workload
traces.

In this paper, we present simulation data only on fixed
number of virtual to physical machines and uniform virtual
machine sharing attributes. Variable number of virtual to
physical machines and nonuniform virtual sharing attributes
are the subject of our ongoing work.

Our future work will also focus on parallel jobs and expect
that the dynamic and sharing aspects of virtual machines
present unique challenges and complexity for parallel job
scheduling. For example. the execution rate of parallel tasks
of a job with frequent synchronization will be limited by the
task assigned to a virtual machine with smallest capacity.
The calculation of potential capacity (PC) will need to
consider such ”ripple effect”. By applying the our new
metrics, we will study the efficiency of different algorithms,
in combination with other well-known scheduling algorithms
such as back-fill and reservation. In this context, we desire
to further study the performance characteristics of assigning
jobs of different priorities or classes to different classes of
virtual machines.

This paper considered CPU utilization as an example
metric for sharing, but VMs can share memory, I/O, and
network bandwidth in a similar manner. The algorithms for
CPU can be applied easily to these other resources. Applying
them to memory poses a unique challenge in that memory al-
location and subsequent de-allocation for strict enforcement
of fairness results in cost. The cost is in the form of CPU
utilization for clean up and the benefit is better application
performance with greedy memory allocation. This cost and
benefit need considering for memory resources. Note that
this is not an issue in CPU, I/O and network allocations
because for practical purposes they are stateless resources so
the re-allocation cost is negligible with an always positive
benefit for the application.

Finally, although this paper focuses on traditional batch
scheduling in which the cluster configuration is predefined,
the metrics are relevant to new scheduling issues and
paradigms such as non-batch or interactive workloads, or
dynamic instantiation of new containers and migration of
existing work. For example, the available cycle range of
PC − EC provides useful input to decisions about adding
containers or work when there is concern about container
quality of service.

VI. ACKNOWLEDGMENTS

This work was supported in part by IBM, and the National
Science Foundation under grants CNS-BPC-AE-1042341,
CNS-MRI-R2-0959985, HRD-CREST-0833093, and NSF-
OISE-PIRE-0730065.

REFERENCES

[1] R. Creasy, “The origin of the vm/370 time-sharing system,”
in IBM Journal of Research and Development, 1981.

[2] “IBM: Advanced power virtualization on ibm system p5.”
[Online]. Available: http://www.redbooks.ibm.com/abstracts/
sg247940.html

[3] “VMWare: Virtualized basics.” [Online]. Available: http:
//www.vmware.com/virtualization/virtual-machine.html

[4] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C.
Sevcik, and P. Wong, “Theory and practice in parallel job
scheduling,” in IPPS ’97: Proceedings of the Job Scheduling
Strategies for Parallel Processing. London, UK: Springer-
Verlag, 1997, pp. 1–34.

[5] “Grid Workload Archive.” [Online]. Available: http://gwa.
ewi.tudelft.nl/pmwiki/

[6] “Cornel Supercomputer Center.” [Online]. Avail-
able: http://www.cs.huji.ac.il/labs/parallel/workload/l\ ctc\
sp2/index.html

[7] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case
for high performance computing with virtual machines,” in
Proceedings of the 20th annual international conference on
Supercomputing. NY, USA: ACM, 2006, pp. 125–134.

[8] C. Macdonell and P. Lu, “Pragmatics of virtual machines for
high-performance computing: A quantitative study of basic
overheads,” in Proceeding of the High Perf. Computing and
Simulation Conf., 2007.

[9] J. Brandt, F. Chen, V. De Sapio, A. Gentile, J. Mayo, P. Pebay,
D. Roe, D. Thompson, and M. Wong, “Combining virtualiza-
tion, resource characterization, and resource management to
enable efficient high performance compute platforms through
intelligent ynamic resource allocation,” in SMTPS Workship
in Conjuction with IPDPS, 2010.

[10] “Parallel Workload Archive.” [Online]. Available: http:
//www.cs.huji.ac.il/labs/parallel/workload/models.html

[11] “Xen server.” [Online]. Available: http://www.citrix.com/
lang/English/home.asp

[12] “KVM.” [Online]. Available: http://www.citrix.com/lang/
English/home.asp

[13] N. Bobroff, A. Kochut, and K. A. Beaty, “Dynamic placement
of virtual machines for managing sla violations,” in Integrated
Network Management, 2007, pp. 119–128.

[14] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic
placement of hpc applications,” in ICS ’08: Proceedings of
the 22nd annual international conference on Supercomputing.
NY, USA: ACM, 2008, pp. 175–184.

[15] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T.
Foster, “Resource leasing and the art of suspending virtual
machines,” in HPCC, 2009, pp. 59–68.

[16] M. Stillwell, F. Vivien, and H. Casanova, “Dynamic fractional
resource scheduling for hpc workloads,” in IPDPS, 2010.

