

Enabling Autonomic Meta-Scheduling in Grid Environments

Yanbin Liu
1
, S. Masoud Sadjadi

2
, Liana Fong

1
, Ivan Rodero

3
, David Villegas

2
, Selim Kalayci

2
,

Norman Bobroff
1
, Juan Carlos Martinez

2

1
IBM Watson Research Center, Hawthorne, NY, USA, {ygliu,llfong,bobroff}@us.ibm.com

2
Florida International University, Miami, FL, USA, {sadjadi,

dvill013,skala001,jmart054}@cs.fiu.edu
3
 Barcelona Supercomputing Center, Barcelona, Spain, irodero@ac.upc.edu

ABSTRACT

Grid computing supports workload execution on computing

resources that are shared across a set of collaborative

organizations. At the core of workload management for Grid

computing is a software component, called meta-scheduler or

Grid resource broker, that provides a virtual layer on top of

heterogeneous Grid middleware, schedulers, and resources.

Meta-schedulers typically enable end-users and applications to

compete over distributed shared resources through the use of

one or more instances of the same meta-scheduler, in a

centralized or distributed manner, respectively. We propose an

approach to enabling autonomic meta-scheduling through the

use of a new communication protocol that –if adopted by

different meta-schedulers or by the applications using them—

can improve the workload execution while avoiding potential

chaos, which can be resulted from blind competition over

resources. This can be made possible by allowing the meta-

schedulers and/or their applications to engage in a process to

negotiate their roles (e.g., consumer, provider, or both),

scheduling policies, service-level agreement, etc. To show the

feasibility of our approach, we developed a prototype that

enables some preliminary autonomic management among three

different meta-schedulers, namely, GridWay, eNANOS, and

TDWB.

Keywords: meta-scheduler, grid resource broker, grid

interoperability, autonomic workload management.

1. INTRODUCTION

Grid computing supports workload execution across

computing resources from cooperating organizations or

institutions, which form a virtual organization (VO) [1]. With

appropriate management system and polices supporting workload

execution and resource usage, the users of such Grid systems can

be benefited from increased availability of computing resources

while the participating organizations can still maintain their

autonomy and fully utilize their own resources, if required. At

the core of a Grid system is the management entity, commonly

known as a meta-scheduler or grid resource broker, which

matches the resources to workload requests for execution based

on policies (e.g., workload service objectives, resource usage

criteria, etc.).

The need for interoperability among Grid systems reflects the

reality that there are numerous organization and institutions that

would like to collaborate and share their resources, but still need

to operate independently and autonomously. Our interoperable

model supports autonomy of organizations and addresses the

scalability issues in managing very large numbers of resources,

and avoids the complexity of an alternative approach in mapping

resources to multiple organizations.

Different architectures have been proposed for these

interoperating meta-scheduling systems, including HPC-Europa

SPA [2], GridWay [3], Koala [4]. Our architectural design

supports schedulers in partnering relations that: (i) can be a

hybrid of distributed and hierarchical; (ii) can be dynamically

established and changed over time; and (iii) can be of different

roles with different policies.

2. PEER-TO-PEER META-SCHEDULING

Our collaborating meta-scheduling architecture consists of

multiple resource domain sites that are independently managed

and operated. Thus, domains are expected to vary widely in

computing and storage capabilities, grid middleware, cluster

managers, local schedulers, and policies for accepting and

executing jobs. Furthermore, resource availability and policies

are not static, and may change within the lifecycle of long

running jobs.

Peer-to-peer

TDWB

IBM-USA

TDWB

IBM-India

IBM

Fork

BSCgrid

BSC

SGE

GCB

Fork

GCBViz

FIU

Meta-

Scheduler

Meta-

Scheduler

Meta-

Scheduler

Peer-to-peer

Peer-to-peer

C P: Job flow is from C to P, resource info flow is from P to C

LL/Fork

CEPBA

Figure 1. Cooperating meta-scheduling in LA Grid.

Figure 1 shows interconnected meta-schedulers at three

diverse institutions of IBM, Florida International University

(FIU), and Barcelona Supercomputing Center (BSC). The figure

also illustrates the hybrid model such that it follows a peer-to-

peer distributed model for interactions between domain meta-

schedulers, while it follows a hierarchical model for interactions

International Conference on Automonic Computing

978-0-7695-3175-5/08 $25.00 © 2008 IEEE
DOI 10.1109/ICAC.2008.15

199

between a meta-scheduler and its local schedulers within the

same domain. Note that there is no direct interaction between a

meta-scheduler from one domain and the local schedulers of

other domains.

Though the meta-schedulers have heterogeneous

implementations, they adhere to a common set of communication

protocols and information encapsulation standards that allow

them to interoperate. Table 1 shows the protocols designed and

implemented. In addition, we assume that the resource requests

expressed by workloads are described in a common language

(JSDL [5]).

For the autonomic management of meta-schedulers, the

starting point is the negotiation of desirable connection between

the collaborating partners. The negotiated parameters include the

roles, the rate that heartbeats should be exchanged to monitor

connection status, type of authentication, and potentially the

quality of service agreements.

TABLE I
List of possible messages in the LA Grid Meta-scheduling Protocol

Connection

Messages

Resource Information

Messages

Job Execution

Messages

openConn() requestResourceData() submitJob()

notifyConn() sendResourceData() queryJob()

Heartbeat() notifyJob()

 cancelJobl()

The possible role of a partner meta-scheduler in our design

includes consumer, provider, or peer. A consumer meta-

scheduler submits resource requests to provider meta-scheduler

that have resources to execute the requests. Two partnering

meta-schedulers are peers if they send and execute requests

between each other.

Any party - provider, consumer, or peer – can initiate a

connection by sending an openConn() message with some

suggested parameters. If the remote party agrees with the

parameters, it starts sending heartbeats, otherwise it counters

with a new openConn() message proposing alternative

parameters. Negotiation continues until agreement is reached or

the number of rounds exceeds a threshold specified by the

initiator, in which case the connection attempt fails. After a

connection is established, the notifyConn() message is used to

send information about the connection. It is also used to

gracefully end the connection. Partners can renegotiate their roles

after terminating their current connection.

Once a connection is established, resource information is sent

to the consumer meta-scheduler either in pull mode (using

requestResourceData()) or push mode (sendResourceData()).

The push mode is also used when updates are triggered by

dynamic changes in resource capacity, utilization, or availability.

Resource updates may be complete or incremental. Complete

updates are typically requested in pull mode by the consumer.

Incremental updates are generally pushed by the provider when

the resource availability/load changes in the domain. If a

provider meta-scheduler has connections to multiple other

providers, in a simple tree interconnection, for example, it may

pass to any attached consumer meta-scheduler the expression of

the full range of resources to which it has access according to its

policies. In our design, we model a scheduler as a resource that

has attributes including the scheduling policies (e.g., priority

based, first-come-first-serve based, etc.), the capability (e.g.,

parallel jobs) and the utilization (e.g., current total number of

jobs, mean job turn-around time). Using the resource

information of all the provider meta-schedulers and its own local

schedulers, a consumer meta-scheduler can intelligently make a

decision and distribute its workload over the local and remote

resources according to its scheduling, quality of service, and

service-level agreement policies.

3. CURRENT STATUS AND FUTURE WORK

The collaborating meta-scheduling architecture and the

common protocols were implemented by three LA Grid [6]

partners (namely, BSC, IBM, and FIU) using independent

implementations of the meta-scheduler, local scheduler, and Web

services technologies. BSC’s prototype uses eNANOS [7], IBM

Research prototype uses IBM product ITDWB [8], and FIU’s

prototype uses Gridway [3]. Our current implementation

achieves the inter-operation among the three meta-schedulers.

We will evolve the current prototype in different directions:

richer set of meta-scheduling functions and protocols, richer set

of local and global polices, separating job/user from resource

policies, optimization for job to resources and domain site

matching, policy agreement negotiation, sophisticated service-

level agreements, etc. Moreover, we are planning to make our

meta-schedulers available to our other LA Grid partners to

explore the effectiveness of our approach in a variety of

application areas such as Hurricane Migration, Bioinformatics,

and Healthcare [9].

Acknowledgment: This work was supported in part by IBM and

the National Science Foundation (grants OISE-0730065, OCI-

0636031, REU-0552555, and HRD-0317692).

REFERENCES

[1] I. Foster, C. Kesselman, editors, “The Grid 2: Blueprint for a New

Computing Infrastructure”, Morgan Kaufmann Publishers, 2003.

[2] HPC-Europa Web Site. http://www.hpc-europa.org

[3] GridWay: http://www.gridway.org/

[4] A. Iosup, D.H.J. Epema, et al. “Inter-Operable Grids thorugh

Delegated MatchMaking”, in proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis (SC07), Reno, Nevada, November 2007.

[5] A. Anjomshoaa, M. Drescher, et. al. “Job Submission Description

Language (JSDL) Specficiation”; Version 1.0, 2005.

[6] LA Grid Initiative: http://latinamericangrid.org/

[7] I. Rodero, R.M. Badia, et. al. “eNANOS Grid Resource Broker”,

European Grid Conference 2005, LNCS 3470, Amsterdam, The

Netherlands, 14-16 February, 2005.

[8] IBM’s Tivoli Dynamic Workload Broker, http://www-

306.ibm.com/software/tivoli/products/dynamic-workload-

broker/index.html

[9] R. Badia et. al. “Innovative Grid Technologies Applied to

Bioinformatics and Hurricane Mitigation”. High Performance

Computing and Grids in Action, IOS Press - Amsterdam, Lucio

Grandinetti editor. Nov/Dec 2007.

200

