Turtles, Robots, Sheep, Cats, Languages what is next to teach programming? A
future developer’s crisis?

F. Edgar Castillo-Barrera', P. David Arjona-Villicana®,
Cesar A. Ramirez-Gamez!, F. Eloy Hernandez-Castro', and S. Masoud Sadjadi’
1School of Engineering, Universidad Auténoma de San Luis Potosi, San Luis Potosi, México
2School of Computing and Information Sciences, Florida International University (FIU), Miami, USA

Abstract

This paper narrates the process that our Computer Sci-
ence department has followed to drastically change the in-
troductory programming courses. Traditionally, our stu-
dents were learning to program using the C language, but
because of the high failure rate it was decided to first teach
basic programming skills using two programming support
tools: Raptor and Scratch. Although the passing rate has
increased, it has not been possible to determine if this new
teaching strategy has eased our students to learn program-
ming in C or C++. We have also noticed that Raptor does
not offer all the basic features required in the syllabus of
our department, therefore an analysis of other program-
ming support tools which may offer a richer set of char-
acteristics is provided.

1 Introduction

Programming courses and curricula have been evolving
since they started and there seems to be no end to this pro-
cess. The BASIC language was very popular as a teach-
ing resource, but it lacked support for structured program-
ming and a modular structure. Hence, Pascal became an
answer to Basic’s limitations. Nowadays, the most popular
languages are C, C++ and Java[7]. Our department is no
different and until the fall of 2011, it used to introduce C as
the first programming language. This produced a very high
failure rate for the Introduction to Programming course.

Other programming tools offer the concept of a mi-
croworld, where a character performs actions based on in-
structions and within the environment or world defined by
its creators. The first tools that used this concept were Logo
turtle graphics and Karel the robot. However over time, it’s
very simple animated GUI ceased to be interesting to many
students because technology provided better graphics and
interfaces.

Still the main problem persists: most students do not
develop a proper programming logic and cannot correctly
employ control structures for programming [9]. New pro-
gramming support tools with multimedia, like Scratch [20],
have recently emerged. Unfortunately, Scratch introduces
the students to programming based on the events paradigm,
while the teaching objectives we seek to develop at our
first programming course follow the linear and procedural
paradigm.

We think that it is necessary to document the process we
have followed to increase the passing rate of our students.
This has required that we analyze different programming
support tools and employ them in an introductory course.
On the other hand, this process has not concluded and we
will continue learning from these experiences in order to
increase the chances of success for our next curriculum
changes.

This paper is structured as follows: Section 2 shows the
related work. Section 3 provides a description and analysis
of the tools used at our department. Section 4 describes the
experience using programming languages. Finally, Section
5 provides a discussion and conclusions of this work.

2 Related work

The literature review on how to teach programming skills
to university students concurs that learning to program is
difficult [12, 17]. Therefore, there have been many propos-
als for strategies and tools which could facilitate the learn-
ing process of this skill. One of such strategies has been
to implement a pre CS1 course (CS0O) in which students
are familiarized with algorithmic and problem solving skills
which could later be applied when trying to learn a standard
programming language [8, 14], like C, C++ or Java.

Computer science courses which try to develop program-
ming skills without using a standard language usually em-
ploy a programming support tool. Most of these tools pro-
vide an easy mechanism to implement a program or algo-

Table 1. Analysis of tools used for learning and teaching programming

Tool Subroutines | Parameters | Animated | Flowchart | Multimedia | Debugger | Statements for
Graphics
KAREL Yes No No No No No No
DFD Yes Yes No Yes No No No
Raptor Yes Yes No Yes No No Yes
Logo Yes No No No No No Yes
Scratch Yes No Yes No Yes No No
Byob Yes Yes Yes Yes Yes Yes No
Jeroo Yes Yes Yes No Yes No No
Greenfoot | Yes Yes Yes No Yes Yes No
PSInt Yes Yes No Yes No Yes No
Alice Yes Yes Yes Yes Yes Yes

Table 2. Analysis of tools used for learning and teaching programming

Tool Linear | Bidimensional | Variables | if while | do-while | for | repeat
Arrays | Arrays until
KAREL No No No Yes | No No No | Yes
DFD No No Yes Yes | Yes No Yes | Yes
Raptor Yes Yes Yes Yes | Yes Yes No | Yes
Logo Yes No Yes Yes | Yes No No | Yes
Scratch Yes No Yes Yes | Yes Yes Yes | Yes
Byob Yes No Yes Yes | Yes Yes Yes | Yes
Jeroo Yes No Yes Yes | Yes Yes Yes | Yes
Greenfoot | Yes Yes Yes Yes | Yes Yes Yes | No
PSInt Yes Yes Yes Yes | Yes No Yes | Yes
Alice Yes Yes Yes Yes | Yes Yes Yes | No

rithm and a visual feedback that allows students to see the
effects to the changes they make. In a SIGCSE panel ses-
sion [13] the following tool classification was proposed:

e Narrative tools: help to create a customized story
which in turn increases the student motivation and en-
gagement, e.g. Alice and Jeroo.

e Visual programming tools: allow students to drag self-
contained units of code and create their own programs
without having to worry about the program syntax and
coding errors, e.g. Alice, Greenfoot and Karel.

e Flow-model tools: implement a flow-model which
shows student how a program should work and by-
passes the need to write code e.g. Raptor and Iconic
Programmer.

e Specialized realization: like Lego Mindstorms, allow
students to physically experience the results of their
implementations.

It is important to note that none of these tools will actu-
ally teach how to create a program in a standard language,
like C or Java. Therefore, there is a gap between tools and
languages. On the other hand, these tools encourage the de-
velopment of the skills needed to learn a standard program-
ming language. This means that, at least in theory, students
that have successfully completed their CSO course should
be half-way to become novice programmers. Therefore, in
order to evaluate the success of these tools it is necessary to
wait until students have finished their equivalent CS1 course
to evaluate if they have really learned to program.

Although there have been efforts to develop a standard-
ized test to evaluate the programming proficiency of stu-
dents [9], we are not aware if this test has been widely ac-
cepted by the academic community.

3 Tools

The use of tools with visual characters and animated ob-
jects using a language based on blocks are now more pop-
ular in the first course of programming. In fact, languages
such as BASIC and PASCAL are no longer common in the
first programming courses.

3.1 Using a simple character: Logo and Karel

Logo was created in 1967 at Bolt, Beranek and Newman
(BBN). A Cambridge, Massachusetts research firm created
by Wally Feurzeig and Seymour Papert [18]. Although suc-
cesses have been reported in the use of microworld pro-
gramming tools, the work done by Xinogalos [21] suggests
the opposite. After Logo, the most used tool to teach pro-
gramming in universities for first-year students was Karel
the Robot, developed by Richard E.Pattis [11] [16] [19]'.
Another version of Karel, which focuses on Object Oriented
Programming, was made by Xinogalos [22] and is called
objectKarel. Based on the experience of other universities
and the literature reviewed [17], we have decided not to start
teaching to program using the object-oriented paradigm.

3.2 Flowcharts: Raptor and DFD

DFD was developed by the Smart group at University of
Magdalena, Colombia [3]. This tool allows you to create
flow charts with subroutine calls and execute them step by
step. An even better tool also based on flow charts is Raptor
[4], which incorporates the use of arrays, graphical mode,
and a debugger. It also allows to create class diagrams in
UML.

3.3 PSelnt: Pseudocode, Flowchart and more

PSelnt is a tool to learn the logic of computer program-
ming based on pseudocode. Through the use of a simple
and limited pseudocode-language and an intuitive user in-
terface in Spanish. The students can begin to understand
basic concepts of control structures, supported by a modu-
lar and a procedural programming paradigm. In addition,
this tools allows the use of flowcharts, functions and pro-
cedures with parameters, and multidimensional arrays are
also supported.

Although in our evaluation of tools PSelnt ranked as one
of the best, it still lacks some desirable features (see Tables
1 and 2): It is only available in Spanish and does not sup-
port multimedia or animated features, which are attractive
to students.

'A new version of Karel, called Critters [2], has been developed by
Anderson and McLoughlin.

3.4 Multimedia: Scratch, Byop, Alice and Green-
foot

Visual programming tools, such as Scratch, Byop, Al-
ice, Greenfoot, have been developed to attract children and
young people to learn programming. They usually allow
the user to develop their own games and provide friendly
interfaces.

3.4.1 Scratch

Scratch [15] is defined as a programming language by its
creators. It was developed at MIT by the Lifelong Kinder-
garten Group. Scratch allows building games, simple apps
and animations, using blocks classified by their functions
with colors, therefore the programmer does not have to learn
commands, keywords or a specific syntax. Therefore this is
a tool which tries to develop skills to program in an Object
Oriented Language. Scratch is intended for 8 to 16 years-
olds but it is being used in introductory computer science
classes at some universities [15]. We selected Scratch as one
of the tools for teaching programming because its graphi-
cal interface motivates our students to practice and develop
their own applications.

The topics cover in our first programming course are se-
lection statement, loops, functions and one-dimensional and
two-dimensional arrays. We have been working with this
tool for four terms, and in the paragraphs below we describe
the advantages and disadvantages we have found.

Scratch has two different selection statements: the if
statement and the if - else statement. Their logic is the same
as C language, and nested selection statements are allowed.
However, there is not a block to represent the switch com-
mand or multiple selections.

Scratch implements four blocks that represent loops,
two of them are infinite loops, there is a while loop with
a conditional at the beginning, and there is a structure sim-
ilar to a for loop: it occurs a specific number of times but
it does not have a variable to control the iterations. Finally,
there is no block to represent the do-while loop.

One of the biggest problems using Scratch is the absence
of functions, procedures or subroutines. Scratch works
based on events and objects, therefore Scratch is not a se-
quential programming language such as C. Scratch allows
sending messages from one to several objects.

Scratch has lists insted of arrays, which are different.
Lists can have elements of different types and there are
blocks that represent functions like orderly insertion, dele-
tion of elements in a specific position, addition of elements
in a specific position and replacement of elements. Those
functions are not predefined for arrays in languages such as
C. Two-dimensional arrays do not exist, neither the option

to define list of lists. There are other points that cause con-
fusion at the moment of learning how to program in Scratch.

e The program can have many entry points, which means
a program can start with an object, or two at the same
time, or maybe the same object with two different ac-
tions.

e Scratch support threads that are a great programming
tool, but having access of these when you start pro-
gramming makes the learning process more complex.

e There are few functions and operators, e.g. the >=
and <= operators do not exist.

e There are not rules for naming at the moment to create
a variable or a message.

On the other hand, Scratch is pleasing for students and
teachers because:

e Creating animations is fast and easy.
e Allows to import images and sounds.
e [t allows to develop creativity.

e There is a web site where students, teachers and devel-
opers can find material, share ideas and projects.

e There are also some complements for Scratch, such as
the PicoBoard which is a device with sensors that allow
the computer to interact with variables in the external
environment.

3.4.2 Byob

Byob (Build Your Own Blocks) is an extension of Scratch.
We have not used it in class yet, but it provides the opportu-
nity to solve three important issues found in Scratch.

e Provides the ability to create blocks by the program-
mer, which means the student can implement func-
tions. In fact, these blocks can receive parameters. The
problem with these blocks is that the external variables
are recognized even though they are not declared in-
side the block.

e Multidimensional lists are supported, but program-
ming them using blocks is not an easy task.

e Byob has two extra blocks for managing ASCII code,
which allows the use of strings.

Some disadvantages of Scratch can be overcome by Byob,
but first it needs to correct some details and increase the
existing documentation.

3.4.3 Alice

Alice seeks to teach programming by employing a 3D
graphical interface. The objective for students is to pro-
gram and animate 3-D objects (e.g. people, animals, and
vehicles) in a virtual world. Alice is a programming envi-
ronment designed to teach computer programming to chil-
dren. It uses a similar approach to Scratch by dragging and
dropping instructions without requiring a text editor, but it
differs in that you can see the generated code in Java. In ad-
dition to the basic language components such as variables,
arrays, loops and conditionals, it also allows the use of func-
tions and parameter passing. Although it is based on Java,
it is not required to know the concepts of object-oriented
paradigm for its use.

Because Alice is based on Java, and since the objective
of our department is to teach our students to use the C lan-
guage, we have decided not to use Alice in our courses.
Because there might be a transition problem from Java to
C.

3.4.4 Greenfoot

In the concept of microworlds, Greenfoot is an environ-
ment for teaching object oriented programming skills. It
employs the Java language and it is a simplified program-
ming environment for developing Java applications. It has
a set of classes that enable the development of programs
directly without starting from scratch. In addition, all the
Java language features such as variables, loops, condition-
als, classes and objects are available. Although Greenfoot
is designed to be a programming environment for beginners,
we use this tool to teach Object Oriented Programming in
our later programming courses. In our experience Green-
foot has proven to be successful for this pourpose. In fact,
it is designed to be used as a programming environment for
beginners. There is a tendency to use Scratch or Alice af-
terwards.

4 Languages: PASCAL, C, C++ and Java

C, C++ and Java are still the more popular languages
in the software industry [7], which is why most universities
employ these languages for their introduction to program-
ming courses. Our experience have shown us that the use of
C as a first language to learn how to program is difficult for
our students.

4.1 PASCAL

As a result of the deficiencies of BASIC (the most pop-
ular language in the mid-1970s), PASCAL was considered
by many to be a good option as a first language to learn

programming. PASCAL is an elegant and complete lan-
guage under the structured paradigm. However concerns
were identified when developing the skills of programming
logic. This led to the conclusion that it was necessary to
develop this skill before learning the language. Dr. Richard
Patys developed Karel robot language, associated with the
concept of microworlds [21]. But based on our analysis of
the concepts needed to learn the student KAREL found that
did not meet all the requirements, so we proceeded to look
for other programs. Moreover its graphical interface is no
longer attractive to students with the development of graph-
ics and multimedia.

42 C

The first language used in our Department, for the bache-
lor of Informatic and Computer Engineering, was PASCAL.
After that the academic staff decided to use the C language
for their first programming course. It is considered the most
complete language for programming in a structured way
and with other characteristics that allow its use in other sub-
sequent courses (operating systems, compilers, graphs, nu-
merical analysis, etc.)

In previous years, we have tried to improve our Introduc-
tion to Programming with C course by employing structures
that would allow to define graphical and three-dimensional
objects. We believed that this structures would develop
the logical skills needed for programming, and at the same
time provide an interesting environment for our students.
Moreover, we would encourage students to develop their
own video games. Unfortunately, the percentage of failure
among these students was still very high. This led us to cre-
ate a previous course where the only focus is on learning the
concepts of structured and modular programming, looking
for programming activities that are simple and attractive to
students. We have found that it is very difficult to find a
tool that includes all the loops in the C language: while,
do-while and for.

A tool called C-Sheep, which is based on C and Karel
and was developed by Anderson and McLoughlin [1], is
another option that we are going to analyse for its possible
use.

4.3 C++ and JAVA

For years it has been discussed whether to teach pro-
gramming using an object-oriented language like C++ or
Java. A more complete discussion and review was made
by Robins et al. [17]. Based on the experience reported
from several universities and considering that the founda-
tion of the object-oriented paradigm is structured program-
ming, and also to the fact that this paradigm seeks to facili-
tate the programming of complex problems which is not the

focus of instruction for a first programming course, we have
concluded that it should not be the language for teaching an
introductory course to programming.

5 Discussion and Conclusions

Dijkstra [5] suggested the use of mathematics as a way
to teach programming, but our experience has shown low
interest in young people to learn math, so it is not consider-
ated a good choice.

Based on the experience gained and the consulted liter-
ature, we have not found definite proofs that using a visual
tool, such as Scratch, is better than using a scripting lan-
guage, a language of diagrams such as Raptor, or a program-
ming language such as C. However, based on our analysis,
we suggest that a tool should be created with the character-
istics mentioned in Table 2, or to complement the PSEint
tool. However in the case of PSEint, it might be better to
be translated into English, to add further control structures
required in our syllabus, and also it might be necessary to
add a lively visual atmosphere such as Scratch that could
motivate students. With these changes we believe that the
number of failed students might decrease. Nevertheless, we
need to evaluate in a later course if students are really learn-
ing how to program.

Students without experience in programming computers
require tools that motivate them to learn and to acquire pro-
gramming skills. In this era of technology, programming
applications for cell phones, social networks, chats, web
pages, tablets and video games are sometimes the most im-
portant concerns of young people.

This article has made the analysis of the results obtained
using software tools to teach a structured programming as
first course in Introduction to Computer Programming. In
past years the course taught using the C programming lan-
guage had a passing rate of around 30%. Once we employed
tools based on microworlds and flowcharts the statistics
showed an increase in the passing rate of around 20%. How-
ever we believe it is necessary to build a tool with the fea-
tures mentioned above in order to furhter increase the pass-
ing rate, and that could lead to a proper learning of com-
puter programming. We want to emphasize that passing a
course of introduction to programming using a tool does not
guarantee that the student knows how to program and it is
not enough to acquire the required programming skills. In
our second programming course based on C language, only
18% passed the course in December 2012.

Students failing in introductory programming courses
are also more likely to drop their degree altogether. This, to-
gether with the fact that there is a decrease in applications to
join in a bachelor of Computer Engineering [6][10], makes
the problem of teaching programming even more important.
With advances in modern technology, students demand pro-

gramming tools for learning, in which they can apply to
their interests, e.g. social networks, cell phones applica-
tions, web pages and video games [2]. Thus these applica-
tions could be used in introductory programming courses as
a way to motivate and introduce students to the core com-
puter science courses.

6 Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. OISE-
0730065.

References

[1] E. F. Anderson and L. McLoughlin. C-sheep: Controlling
entities in a 3d virtual world as a tool for computer science
education. 2006.

[2] E. F. Anderson and L. McLoughlin. Do robots dream of
virtual sheep: Rediscovering the” karel the robot” paradigm
for the” plug&play generation”. 2006.

[3] C. N. Cardenas, F. and D. Eduardo. Universidad del mag-
dalena, santa marta, colombia. Grupo Smart, 1998.

[4] M. C. Carlisle, T. A. Wilson, J. W. Humpbhries, and S. M.
Hadfield. Raptor: a visual programming environment for
teaching algorithmic problem solving. In ACM SIGCSE Bul-
letin, volume 37, pages 176-180. ACM, 2005.

[5] E. W. Dijkstra et al. On the cruelty of really teaching com-
puting science. Communications of the ACM, 32(12):1398—
1404, 1989.

[6] S. Guia, S. Campus, and S. Talento. Fomentar el ingreso y
la permanencia en carreras de ti.

[7]1 R. S. King. The top 10 programming languages. Technical
report, IEEE Spectrum.

[8] M. Klassen. Visual approach for teaching programming con-
cepts. In 9th International Conference on Engineering Edu-
cation. INEER, Jul 2006.

[9] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz. A multi-national, multi-institutional study of
assessment of programming skills of first-year cs students.
SIGCSE Bulletin, 33(4):125-180, Dec 2001.

[10] B. Parhami. Puzzling problems in computer engineering.
Computer, 42(3):26-29, 2009.

[11] R. E. Pattis. Karel the Robot: A Gentle Introduction to the
Art of Programming. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1981.

[12] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams,
J. Bennedsen, M. Devlin, and J. Paterson. A survey of litera-
ture on the teaching of introductory programming. SIGCSE
Bulletin, 39(4):204-223, Dec 2007.

[13] K. Powers, P. Gross, S. Cooper, M. McNally, K. J. Goldman,
V. Proulx, and M. Carlisle. Tools for teaching introductory
programming: What works? In Proceedings of the 37th
SIGCSE technical symposium on computer science educa-
tion, pages 560-561, Mar 2006. This was a panel session,
not really an article.

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

D. Reed. Rethinking csO with javascript. SIGCSE Bulletin,
33(1):100-104, Feb 2001.

M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Sil-
ver, B. Silverman, et al. Scratch: programming for all. Com-
munications of the ACM, 52(11):60-67, 2009.

E. Roberts. Karel the robot learns java. Department of Com-
puter Science Stanford University, 2005.

A. Robins, J. Rountree, and N. Rountree. Learning and
teaching programming: A review and discussion. Computer
Science Education, 13(2):137-172, 2003.

C.J. Solomon and S. Papert. A case study of a young child
doing turtle graphics in logo. In Proceedings of the June
7-10, 1976, national computer conference and exposition,
pages 1049-1056. ACM, 1976.

R. H. Untch. Teaching programming using the karel
the robot paradigm realized with a conventional language.
On-line at: http://www. mtsu. edu/untch/karel/karel90. pdf,
1990.

I. Utting, S. Cooper, M. Kolling, J. Maloney, and
M. Resnick. Alice, greenfoot, and scratch—-a discus-
sion. ACM Transactions on Computing Education (TOCE),
10(4):17, 2010.

S. Xinogalos. An evaluation of knowledge transfer from mi-
croworld programming to conventional programming. Jour-
nal of Educational Computing Research, 47(3):251-277,
2012.

S. Xinogalos, M. Satratzemi, and V. Dagdilelis. An objects-
first approach to teaching object orientation based on ob-
jectkarel. In Proceedings of the 5th WSEAS Interna-
tional Conference on Education and Educational Technol-
ogy (EDU’06), page 93, 2007.

