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Abstract

The goal of grid computing is to integrate the usage of computer resources from cooperating partners in the form of Virtual
Organizations (VO). One of its keys functions is to match jobs to execution resources efficiently. For interoperability between VOs,
this matching operation occurs in resource brokering middleware, commonly referred to as the meta-scheduler or meta-broker. In
this paper, we present an approach to a meta-scheduler architecture, combining hierarchical and peer-to-peer models for flexibility
and extensibility. Interoperability is further promoted through the introduction of a set of protocols, allowing meta-schedulers to
maintain sessions and exchange job and resource state using Web Services. Our architecture also incorporates a resource model that
enables an efficient resource matching across multiple Virtual Organizations, especially where the compute resources and state are
dynamic. Experiments demonstrate these new functional features across three distributed organizations (BSC, FIU, and IBM), that
internally use different job scheduling technologies, computing infrastructure and security mechanisms. Performance evaluations
through actual system measurements and simulations provide the insights on the architecture’s effectiveness and scalability.
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1. Introduction

Grid computing leverages resources from multiple cooper-
ating institutions to form Virtual Organizations (VOs) [1] that
provide computing power while sharing the cost of resource
ownership. Recent advances in cooperating grids, or interoper-
ating VOs, include fulfilling job requests using data and com-
puting resources distributed across multiple grids. This vision
of cooperating grids further provides the opportunity for global
optimizations of resource usage, reducing job execution cost
and power consumption. The challenges to achieve this vision
of interoperable, globally distributed VOs are well documented.
They include providing common interface descriptions, system
models, and levels of abstraction to hide heterogeneity in the
computing resources, security mechanisms, and job manage-
ment policies of the collaborating organizations, as articulated
in the paper by Rodero, et al. [2]. Several architectures have
been proposed to achieve these goals including SPA [3], Grid-
Way [4] and Koala [5].
This paper describes an approach based on interoperating

meta-schedulers. The interoperable meta-scheduler model sup-
ports the autonomy of organizations and presents a common
external interface to partner domains as indicated in Figure 1.
It shows a peer-to-peer collaborative environment constructed
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for the purpose of experimentation between three VO domains
among three partnering institutions within the LA Grid Initia-
tive [6]: Florida International University (FIU), Barcelona Su-
percomputing Center (BSC) and IBM Research (IBM). Meta-
schedulers serve as the point of contact for end users submitting
jobs to these sites as well as for cooperating VOs to exchange
control messages.

To enable interoperation among meta-scheduler, interfaces
and functions are defined for the operations of job lifecycle
management and the distribution of current state and availabil-
ity of system wide computing resources. When a user submits a
job to a meta-scheduler, the meta-scheduler decides whether to
execute the job on local resources under its control or forward
it to another meta-scheduler either because there is not enough
suitable local resources or because the remote meta-scheduler
is better suited to execute the job. Because the grid is a dy-
namic environment, good forwarding decisions require global
distribution of resource state data to each meta-scheduler do-
main. As the system of Figure 1 is scaled up the volume of data
exchanged becomes an important issue. Forwarding based on
inaccurate data leads to failures in job dispatching at the target
domain, while real time exchanges of complete resource state
incur significant network and storage management costs at the
meta-scheduler endpoints.
A peer-to-peer —as opposed to centralized— model of re-

source data distribution is investigated to be consistent with our
overall meta-scheduler topology of Figure 1. In order to re-
duce the amount of resource data sent and stored at each node,
several aggregation models are developed in Section 2. Each
model represents an increasing degree of data consolidation,
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Figure 1: Cooperating meta-scheduling in LA Grid

with the trade-off of decreasing the accuracy of state informa-
tion.
The accuracy of job forwarding decisions (i.e., the ability

to avoid false positives when forwarding job requests among
meta-schedulers) is also a strong function of the forwarding al-
gorithm. The performance of several forwarding algorithms is
investigated in combination with the resource models having
different accuracy levels. These studies are based on the im-
plementation of Figure 1 and are supplemented by simulations
for very large distributed grid systems using peer-to-peer meta-
schedulers. One result of the simulation is to show that resource
models containing very compressed and less accurate data still
provide useful hints to the meta-scheduler on where to forward
jobs.
The contributions of this paper begin with the design of pro-

tocols for meta-scheduler interoperation and the peer oriented
meta-scheduler topology (Section 2) and their implementation
in three architecturally distinct meta-schedulers at BSC, IBM
and FIU (Section 3). A key aspect of the design is the ability
to scalably share static and dynamic resource information be-
tween meta-schedulers. To achieve scalability several models
of resource data compression are developed that trade off data
transmission volume against accuracy as covered in Section 2.2.
These design choices are then evaluated and tested starting with
a small scale experimental platform interconnecting the BSC,
FIU, and IBM VOs to run high performance computing (HPC)
jobs based on the Weather Research Forecasting (WRF) appli-
cation. Section 4 demonstrates interoperability of these three
sites. The small scale setup also provides operational perfor-
mance data that is one input into a trace driven simulation of
a large scale environment with up to 27 VOs. The simulation
considers several matchmaking algorithms with increasing lev-
els of resource data exchange and corresponding overhead. The
most important conclusion from the experiments is that provid-
ing even highly aggregated resource information improves the
execution times of jobs by orders of magnitude in a matchmak-
ing system. We conclude that resource data greatly improves

the accuracy of forwarding algorithms at the meta-scheduler.
Poor decisions cause jobs to queue at the target site while wait-
ing for resources. When resource availability information is
known, even at a statistical level because it is aggregated, the
forwarding decisions are much closer to optimal.

2. The Peer-to-Peer Model of Meta-Schedulers

The meta-scheduler is the primary contact point for grid
users and other meta-schedulers. Internally, meta-schedulers
may have heterogeneous implementations, but adhere to a com-
mon set of communication protocols and information models
that allow them to interoperate and provide a consistent view of
the interconnected grids. The interaction model adopted here
is based on a peer-to-peer model where any meta-scheduler
can interact with any other in a consistent way. There is no
central or hierarchical structure such as a scheduling author-
ity, global repository for resource information, or directory of
meta-schedulers. Figure 1 shows such a model for the three
interacting domains at BSC, FIU and IBM.
Flexibility is added to the peer-to-peer interactions through

the introduction of provider and consumer roles. A meta-
scheduler in the provider role offers its resources for the exe-
cution of other meta-schedulers’ jobs, while a meta-scheduler
with the consumer role requests other meta-schedulers’ re-
sources for the execution of its jobs. Providers advertise their
sharable resources to connected consumers which in turn may
propagate this information to their peers. When a job arrives
to a meta-scheduler, it decides whether to run the job locally
within its domain or forward it to one of its providers. These
roles are properties of the meta-scheduler endpoints for a con-
nection between meta-schedulers. A meta-scheduler can be a
provider to a set of meta-schedulers and simultaneously be a
consumer to another set of meta-schedulers.
Assignment of one or both of these roles to the connection

between two meta-schedulers allows administrators to shape
the interconnected structure of the grid. The flow of resource

2



Figure 2: Cooperating meta-scheduling in LA Grid

information and forwarding of job submissions to providers is
constrained by the provider and consumer roles of each connec-
tion. For example, in connecting the domains of BSC, FIU and
IBM (Figure 1) each meta-scheduler is both a provider and a
consumer to other meta-schedulers. Thus, resource information
fully distributed between partners and jobs can be submitted or
forwarded to every domain. In contrast, a centralized model is
created using a ‘star’ topology where a central meta-scheduler
is a consumer to all connected ‘edge’ meta-schedulers, and the
edge meta-schedulers are both provider and consumer to the
central meta-scheduler. Since the star has no connections be-
tween edge meta-schedulers, only central meta-scheduler will
have the information of resources at every edge meta-scheduler
and be able to forward jobs.
The meta-scheduler roles can be assigned and changed dy-

namically. For example, when a domain administrator makes
available the domain’s compute resources for sharing only dur-
ing periods of low local activity. Here the domain’s external
facing meta-scheduler is a consumer most of the time, while
taking on both consumer and provider roles off shift. In this
example, meta-schedulers internal to the administrative domain
may be providers at all times.
Multiple capabilities and operations are required on the part

of the meta-scheduler to participate in the peer-to-peer model.
Membership of the peer-to-peer network overlay requires each
member to support the basic set of the inter-operation protocols
described in the next sub-section.

2.1. Protocols and Interfaces

There are three types of operations between meta-schedulers
as indicated in Figure 2 and Table 1: connection and commu-
nication, resource exchange, and job life cycle management.
The connection protocol initiates membership in the grid and
negotiates parameters including the authentication method and
parameters, the provider/consumer roles, the heartbeat rate to
monitor connection status, and the resource and job descrip-
tion language understood by the parties. OpenConn()messages
are exchanged,multiple rounds if necessary, between two meta-
schedulers during the negotiation until an agreement is reached,
or the number of rounds exceeds a threshold specified by the

Connection Resource Information Job Execution
Messages Messages Messages
openConn() requestResourceData() submitJob()
notifyConn() sendResourceData() queryJob()
heartbeat() notifyJob()

cancelJob()

Table 1: List of messages in the LA Grid meta-scheduling pro-
tocol

initiator, in which case the connection attempt fails. Once a
connection is established, heartbeat() messages are exchanged
using the negotiated intervals and the notifyConn() message is
used to notify partners of error conditions or gracefully termi-
nate the connection.
Resource exchange occurs between connected meta-

schedulers using either pull mode (requestResourceData()) by
a consumer, or push mode by a provider (sendResourceData()).
The provider triggers sendResourceData() when the dynamic
changes in resource capacity, utilization, or availability are over
a threshold. Resource updates may be full or incremental. The
consumer typically requests full updates in pull mode, while the
provider generally pushes incremental updates.
Job requests are submitted using the submitJob() message.

Our implementation uses JSDL (Job Submission Description
Language [7]), an OGF1 proposed recommendation, as the
standard format for job submission. The receiving meta-
scheduler creates a local record of the submission and assigns
a unique identifier to the job, which is returned to the sub-
mitter. Then it checks for a match against its resources and
decides whether to schedule the job locally, or try to match
the requirements against the available resources of other meta-
schedulers. A job is forwarded between meta-schedulers us-
ing the same submitJob() interface and procedures. The job is
tagged with a web service end point reference (EPR) of the for-
warding meta-scheduler. This process is repeated until the job

1http://www.ogf.org
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Figure 3: Meta-scheduler protocol example

reaches a meta-scheduler that executes the job using its local
resources. A map of forwarding EPRs is retained at each inter-
mediate meta-scheduler to allow job status updates to be sent
back from the executing domain to the original submitter. The
notifyJob()message is used to asynchronously inform the client
of job status using this chain of forwarding meta-schedulers.
The submitting client or a system administrator queries the job
state or cancels the job through the synchronous queryJob() or
asynchronous cancelJob()messages.
Figure 3 shows an example of two protocol operations. First,

a consumer and a producer negotiate the connection parameters
until they reach an agreement. After that, they start exchanging
heartbeat() messages. The second part of the figure illustrates
a job submission request with forwarding. In it, the consumer
makes an initial jobSubmit() call to Producer A, which returns
a job identifier. Then, Producer A decides to forward the call to
Producer B, and after sending the request it receives a new job
ID. Finally, when Producer B notifies Producer A, the later can
also forward the notification message to the initial requester.

2.2. Resource Model

Efficient discovery of compute resources in a large-scale grid
is challenging. In the cooperating meta-scheduler model each
member maintains a local copy of resource information ob-
tained from its peers. This allows each meta-scheduler to lo-
cate suitable resources for a job request without constantly con-
sulting other meta-schedulers, reducing communication costs.
However maintaining currency of resource information in a
peer model requires more data exchanges than systems that
use a central resource manager. This issue is addressed by
combining a relational resource model with aggregation to re-
duce the size of the transmitted resource descriptions. The re-
sulting compromise between aggregation level and accuracy
of scheduling decisions is further studied in Section 4 for the
bounding cases of full resource information and the most com-
pact model presented here.
Table 2 provides a sample inventory of five computer system

resource records including CPU architecture, operating system

and file system type. The available CPU cycles field is normal-
ized to the processing power of a standard system to take into
account the heterogeneity of the systems. For each resource
type such as ComputerSystem, an aggregated type is created,
in this case AggregateComputerSystem. The attribute set of the
aggregate resource type is a subset of the individual resource
type plus the attributes that describe the total, mean, median,
count and other statistical information. The data type of each
attribute value in the aggregate resource is a string that is either
a single value, a range value, or a list of values.
The process of creating an aggregated resource model using

the sample inventory is illustrated in Figure 4. On the left are
the computer system types differentiated by architecture (pow-
erPC or X86) with aggregated attributes of ProcSpeed, Proc-
Num, and CPUUtil. In ComputingSystemResource1 the range
data type is used for the ProcSpeed attribute to show that there
are 2 Power systems whose processor speed falls in the range
2.0–3.2GHz. On the right are combined resource types for the
file and operating systems. The aggregate resource types are
interconnected using relationships. Relationships link differ-
ing types and enhance the information content of the model al-
lowing better matching of jobs to resources. The figure shows
that ComputingSystemResource1 “contains” OperatingSystem-
Resource1, while it “uses” FileSystemResource1.
Clearly, this model provides considerable flexibility in select-

ing aggregating attributes. This allows construction of resource
models with configurable accuracy levels based on the patterns
of individual (detailed) resources. The greater the accuracy, the
more data is transmitted. Three archetype models, 1-N, unique,
and N-N, that decrease incrementally in steps of accuracy, are
presented below.
Other approaches taken to group together similar resources

are described in the literature. For example, the algorithm im-
plemented by Ganglia [8] adopts a hierarchical structure using
a tree of connections among cluster nodes to federate clusters
and aggregate their state. Other algorithms [9, 10, 8] focus on
grouping by type and attributes, but do not consider the relation-
ship among different types of resources. The model of Figure 4
maintains multiple resource types connected through relation-
ships.
Because of the aggregation model’s flexibility and the free-

dom for peer meta-schedulers to choose the details about how
their resources are aggregated, it is necessary to have a schema
language that describes the encoded data. The schemas are
also input to the meta-scheduler allowing an administrator to
define the types of models to use. The schema corresponding
to Figure 4 is provided in Listing 1. It states that Computer-
System resources are aggregated based on their ProcType val-
ues, while attributes ProcNum, ProcSpeed and CPUUtil are in-
cluded in the aggregated resources. OperatingSystem resources
are also aggregated based on their OSType values. Finally, the
relationship between aggregated computer and operating sys-
tems is maintained using the unique model which is one of the
archetype resource relationship models described next.
The relations between aggregated types introduced above are

used to define four resource models representing a range of in-
formation consolidation, from the complete resource descrip-
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ProcType ProcSpeed ProcNum CPUUtil OSType FreeMem FreeVirMem FSType SizeMB FreeMB
PowerPC 3200 2 60 Linux 2000 1000 swap 120000 90000
PowerPC 2000 4 180 Windows 8000 4000 - - -
Intel x86 3000 1 50 Linux 4000 2000 - - -
Intel x86 2600 6 240 Windows 1000 500 - - -
Intel x86 3200 2 120 Windows 1000 1000 - - -

Table 2: Example resource inventory
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

Figure 4: Aggregate resource model example

<r oo t − r e s o u r c e>ComputerSys tem
<key− a t t r i b u t e>ProcType</ key− a t t r i b u t e>
<a t t r i b u t e>ProcNum</ a t t r i b u t e>
<a t t r i b u t e>ProcSpeed</ a t t r i b u t e>
<a t t r i b u t e>CPUUtil</ a t t r i b u t e>

</ r o o t − r e s o u r c e>
<r e s o u r c e>Opera t ingSys tem

<key− a t t r i b u t e>OSType</ key− a t t r i b u t e>
<a t t r i b u t e>v e r s i o n</ a t t r i b u t e>
<a t t r i b u t e>FreeMem</ a t t r i b u t e>
<a t t r i b u t e>FreeVirMem</ a t t r i b u t e>

</ r e s o u r c e>
<r e l a t i o n s h i p −model>

un ique
</ r e l a t i o n s h i p −model>

Listing 1: Example of resources

tion of the flat model to the compact N-N model, as illustrated
in Figure 5 (as in the previous figure the data corresponds to
that in Table 2).

• Flat: The flat model faithfully reproduces the system in-
formation, such as in Table 2. In that example, aggregated
resource types are not used and there are 5 compute re-
sources, 5 OS resources, and 1 file system interconnected
by contains and uses relations.

• N-to-N model: This model represents the most compres-
sion and least accuracy. It aggregates resources of the
same type, then retains multiple relations to other aggre-
gated types, which may sometimes result in ambiguity.

Notably, the parent of the contains relation does not dis-
tinguish by the type of each child of the relation. This
model is useful as a limit case on what accuracy is needed
for matching job requests to resources. Section 4 shows
the model works surprisingly well in large systems.

• Unique model: This model maintains information in par-
ent aggregated resource types about all unique relation-
ships with children. It is created by first identifying unique
relationships based on some standards. The example of
Figure 5 shows unique relationship betweenComputerSys-
tem and OperatingSystem resources based on the former’s
architecture and the latter’s OS types. Then, an aggrega-
tion is performed on the resources of each unique relation-
ship.

• 1-to-N model: This model aggregates resources in two
stages. The first stage aggregates resources at the top (par-
ents) of the relationship map. The example of the fig-
ure aggregates ComputerSystem first. Then, the second
stage aggregates additional resources that have relation-
ships with the same aggregate resource from first stage.
The example of Figure 5 aggregates OperatingSystem re-
sources that are contained in the same aggregated Com-
puterSystem. This maintains the “contains” relationship as
1-to-N such that one aggregate ComputerSystem contains
multiple aggregated OperatingSystem while one Operat-
ingSystem is contained at most by one aggregated Com-
puterSystem.
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

































































 



Figure 5: Examples for the resource aggregation models

These models keep different levels of relationship details and
impose different complexity to aggregation algorithms, which
results in different information density. The efficacy of the most
condensed N-N model in job to resource matching is studied
and compared to the full resource model (flat) in Section 4.

2.3. Job Broker and Scheduling Criteria

The function of a meta-scheduler is to optimally forward job
submissions to a Local Resource Management System (LRMS)
or connected meta-scheduler in the provider role. A job’s re-
quirements for resources and execution environments are ex-
pressed by a job submission description document (i.e., JSDL).
In our meta-scheduler design, resource matching for a job is
based on three considerations: capacity, capability, and utiliza-
tion.
The resource models of meta-schedulers are described in the

schema of Section 2.2. The capacity of a meta-scheduler cor-
responds to the aggregated capacities of the attached LRMSs
plus peer meta-schedulers. Capabilities describe what LRMSs
and meta-schedulers can do: a LRMS capability might in-
clude the ability to schedule parallel jobs, or make advance
resource reservations. Capabilities at the meta-scheduler re-
flect high-level scheduling considerations, domain access, and
membership in virtual organizations. Meta-schedulers in a cor-
porate data center can have attributes stating that it will not ac-
cept forwarded jobs during times when important local work
must complete. Utilization of resources is considered by a
meta-scheduler when making scheduling decisions. Each meta-
scheduler monitors the utilization of its associated LRMSs, as
well as those reported by its peer meta-schedulers providing
computing power. It is a challenge to measure utilization at the
required granularity to make good scheduling decisions. For
example, reporting the most recent short-term average CPU uti-
lization of each of thousands of nodes in a cluster may not give

the most appropriate information to a scheduler. Less granular
methods of utilization reporting are often based on the notion
of workload classes. A class defines the requirements of a job,
such as small, medium, and large; or interactive and batch jobs.
For example, a provider of computer resources can report how
many jobs of each class it presently supports, and the occu-
pancy of each class. Additional utilization information can be
provided by giving the average waiting time or queue length for
each class.
Since we consider aggregated resource information, data in-

volved in the scheduling decision may be less accurate when
certain aggregation schemas are applied (e.g., the N–N model).
Consequently, to perform the matchmaking between job re-
quests and resources from the aggregated data, we take statis-
tical information such as maximum and minimum values con-
tained in the resources for the requirements and a combination
of average values for refining the selection. Furthermore, since
the resource matching is performed at the broker level, the in-
formation loss can result in non-optimal broker selection de-
cisions. For example, the algorithm may select a broker with
insufficient resources when another broker is able to dispatch
the job immediately. Therefore, the level of aggregation of the
resource information is crucial.

2.4. Security and Data Transfer Mechanisms
Security protocols and processes vary considerably across

virtual organizations and administrative domains. This variabil-
ity is manifested in the operations of data staging and job dis-
patching. Data staging is typically an inter-domain operation in
which either input data is transferred to the execution domain or
job results are sent to a target destination. Typical protocols for
data staging are SCP, FTP, or GridFTP. The job execution do-
main requires security credentials of the data domains in order
to initiate file transfers.
Job dispatching is performed within a domain by a local

scheduler and resource manager whose authentication scheme
may require yet another security protocol and set of credentials.
The diversity of security mechanisms include SSH private/pub-
lic keys, x509 certificates for Grid Security Infrastructure (GSI)
or simple user id/password systems for some schedulers.
Rather than requiring interoperating meta-schedulers to sup-

port APIs for exchanging all popular security protocols for data
staging and job execution, in our design the meta-scheduler
supports a limited number of common security options. One
of these is selected by negotiation at connection time and is
active for the meta-scheduler to meta-scheduler session. This
approach allows each meta-scheduler to implement the most
appropriate interfaces for a given virtual organization, translat-
ing external models to local ones when necessary. An inter-
nal mapping of submitted user/job credentials from the negoti-
ated security mechanism to the possible different one required
for data staging or job execution is maintained by the meta-
scheduler. For example, a user submits a job to meta-scheduler
‘A’ using an SSH public/private key credential. If that meta-
scheduler decides to forward a job to meta-scheduler ‘B’ that
is using an x509 certificate it must maintain an internal reposi-
tory that maps the SSH credentials to the user’s x509 certificate
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which is then sent to meta-scheduler ‘B’. This exchangemay be
achieved with the MyProxy credential repository [11], which is
populated out of band with the security mapping.
An important aspect of security is how to access super-

computing facilities, which usually have very restrictive access
mechanisms. At IBM, a firewall has been enabled to hide both
meta-scheduling services and supercomputing resources. To
access LA Grid meta-scheduling services secure web service
calls are required, with a public-private key security mechanism
used for authentication. At BSC the eNANOS Broker acts as a
gateway to BSC resources. To access the Marenostrum super-
computing facility, a secure channel is established. For the rest
of resources, it uses GSI as security mechanism. Actually, the
eNANOS Broker translates regular GSI calls to Marenostrum
when required. At FIU, GridWay is configured with GSI secu-
rity mechanisms.

3. Meta-Scheduler Implementations

The architecture of the meta-scheduling communication pro-
tocol allows for different sites to coexist while maintaining site-
specific policies, internal security mechanisms or implemen-
tation details hidden from other peers. As long as all meta-
schedulers implement the required interfaces, the proposed pro-
tocol allows them to communicate and share workloads trans-
parently.
As a proof of concept, we have enabled three sites under dif-

ferent administrative domains to communicate using our meta-
scheduling protocol. Each of these sites has its own implemen-
tation in terms of the underlying resource management systems
or security and scheduling policies, but all of them implement a
common protocol for communication of resource and job infor-
mation. The site at BSC extends an in-house developed meta-
scheduler, eNANOS, which uses the Globus Toolkit (GT) inter-
nally; IBM implements the meta-scheduling protocol on top of
one of their commercial products, IBM Tivoli Dynamic Work-
load Broker; FIU developed an extension to the GridWay open
source meta-scheduler to enable interoperability.
Some of the internal details of these three implementations,

as well as the steps taken to enable them to join the other sites,
are discussed next.

3.1. The BSC Meta-Scheduler
At BSC, the LA Grid meta-scheduler functions are imple-

mented using the eNANOS framework [12][13], which is based
on GT4 services (i.e., every component is a service). The im-
plementation includes several extensions to the eNANOS bro-
ker and a new dedicated scheduling policy plug-in, which is
also a GT4 service. The extended architecture of eNANOS is
shown in Figure 6 with the LA Grid extensions in dark shading.
Since other LA Grid meta-schedulers implement the interop-

eration protocols using regular web services, eNANOS exten-
sions are developed as a set of Axis2 2 services to avoid incom-
patibility problems with GT4 services. Some of the compat-
ibility problems include the SOAP message formats and data

2http://axis.apache.org/axis2/java/core/

types. The Axis2 services implemented on the server side act
as a wrapper to support redirecting calls to GT4 and perform
data transformations when necessary. To support interactions
between the eNANOS and other LA Grid meta-schedulers, we
implement a set of regular web services for the APIs as the
client interface.

Figure 6: Architecture of eNANOS with the LA Grid specific
components

Leveraging the default persistence mechanism of GT4, the
data that is relevant to LA Grid functions, such as meta-
scheduler connections and resource information from other
meta-schedulers, is stored using GT4 Resource Properties.
We implement a new set of resource management functions

to support resource information exchanged between partner-
ing meta-schedulers. After obtaining the resource information
within the domain, we create the aggregated form of resource
information using the main attributes of resources and cluster-
ing the data by CPU and OS type, as shown in the resource
example of section 2.2.
In addition to receiving jobs routed from other LAGrid meta-

schedulers through the Job Management API, the eNANOS
broker can receive job submissions and other requests from reg-
ular users through the eNANOS clients that may be a command-
line or a Java API (which can be used, for example, by a web
portal or an external application), as shown in the top part of
Figure 6. We modify the job submission interface to support
the LA Grid parameters (e.g., the connection ID or the notifi-
cation End-Point Reference). To allow the eNANOS services
manage the LA Grid forwarded jobs, we adapt the job schema
used in eNANOS. In particular, we add a new element that con-
tains a set of LA Grid information, and a new job status (FOR-
WARDED) for the jobs that have been forwarded to or from
another meta-scheduler.
Since we observe that significant modifications in the
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scheduling service are required to implement the scheduling
policies based on aggregated resource information and to allow
job forwarding, we implement a separate scheduling service for
LA Grid. Moreover, we implement a scheduling policy for LA
Grid using a new scheduling policy plug-in. Since both ser-
vices and plug-ins are implemented as modules with abstract
interfaces, the broker is updated by defining those new services
and updating the configuration file.
With respect to the notification functionality, we modify the

monitoring of eNANOS to notify other meta-schedulers when
the status of a forwarded job changes. This is done as an ex-
tension of the current monitoring module using the LA Grid
information incorporated in the job schema.

3.2. The IBM Meta-Scheduler

The IBM Research meta-scheduler is implemented by ex-
tending an IBM scheduling product: IBM Tivoli Dynamic
Workload Broker (ITDWB) [14].
An ITDWB server collects resource information from agents

on resources, accepts job requests from users and is able to
match jobs to resources that have dynamic availability and
utilization. The combined ITDWB architecture and meta-
scheduler extensions are shown in Figure 7. The base prod-
uct components [15] (shown as boxes on the right hand side of
Figure 7) are a job dispatcher, a resource advisor and a reposi-
tory to persist job and resource information. Other components
include a set of agents (shown as boxes at the bottom of the
Figure 7) to collect resource information and to execute jobs on
computing platforms.
Our extension comprises a set of changes to the interface and

functionality. New web service components (shown as boxes
on the left hand of Figure 7) are added to realize the interop-
erability with other meta-schedulers as described in previous
sections. Thus, a broker server retrieves information from and
dispatches jobs not only to its agents, but also to other meta-
schedulers.

Figure 7: Extended ITDWB for meta-scheduling functions

Since jobs can be dispatched to other meta-schedulers, we
need to extend the Job Dispatcher component, which manages

the lifecycle of jobs including storing and updating jobs’ in-
formation, dispatching them to Job Executors, and communi-
cating with submitters. First, ITDWB uses a dialect of JSDL
to describe jobs. However, OGF’s JDSL3 is a more accepted
standard. Thus, we implement, using Axis2, a module that can
convert formats between different JSDL formats that are rep-
resented in XML files. With the ongoing evolution of JSDL,
vendor specific extensions and dialects, we believe that such a
converter would be a necessity. Our converter is implemented
in Java for its potential flexibility, though we debate different
approaches such as using XSLT, with which transformation can
be dynamically manipulated without recompilation.
Second, the Job Dispatcher is enhanced to process jobs

routed from and to other resource domains. For jobs routed
to other schedulers, job-forwarding information is stored in
the repository. Thus, the meta-scheduler receiving a job query
knows how to forward it and how to send back the status report
and execution result in the reverse direction.
The Resource Advisor is also enhanced to process resource

information supplied by remote meta-schedulers with whom
connections are established. Note that in the extended version
we not only have more information to deal with, but the infor-
mation can have different formats and different security levels.
We extend the resource model of ITDWB and include aggre-
gated format of resources. For example, the Resource Advisor
retrieves individual resource information from a database and
aggregates it as part of the response to requestResourceData()
calls.
Scheduling algorithms, which choose a set of resources that

satisfies a job request, are implemented as plug-ins of Resource
Advisor. We implement new algorithms that take resource loca-
tion into consideration and that can match the resource require-
ment of jobs with aggregate information.

3.3. The FIU Meta-Scheduler
The implementation of FIU’s meta-scheduler leverages an

existing open source solution, the GridWay meta-scheduling
platform [4]. GridWay is a community project with an open
source license. We choose it for its use of open standards and
its modular nature. GridWay is implemented as a group of man-
agers that communicate using standard I/O. It offers facilities
for job management, data transfers and resource information.
GridWay is a Globus incubator project, and therefore, it is

supported by the Globus Consortium. This means that all ad-
vances in GridWay will be in line with the Globus project. It
provides one of the first implementations of the DRMAA (Dis-
tributed Resource Management Application) API 4 for job sub-
mission and status querying.
The FIU meta-scheduler is built as a set of modules that

deal with different aspects such as peer communication, site
scheduling, and resource management. The details related to
local resource management are delegated to GridWay, while the
high-level scheduling decisions are made by our wrapper.

3For example, JSDL includes a schema describing an application that can
be executed on a POSIX compliant system.

4http://www.ogf.org/documents/GFD.22.pdf
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The core modules and their interaction is shown in Figure 8.
Here is a brief explanation of each module’s responsibilities:

• User Interface: The user interface module is in charge of
receiving external users’ requests such as job submission
or resource information. Users can interact with the meta-
scheduler using a command-line interface and job submis-
sion is done through OGF’s JSDL files.

• Site Scheduling Manager: This module wraps GridWay
functionality for intra-domain scheduling. The rest of the
modules interact with it using DRMAA.

• Global Scheduling Manager: This module deals with
global scheduling policies. It is in charge of deciding
whether a job will be scheduled and processed on the local
domain or it will be forwarded to another domain. Addi-
tionally, this module keeps track of the jobs’ status sub-
mitted from other domains.

• Resource Manager: It stores information about the re-
sources in local domain and the remote domains, which
have exchanged their resource information through an
open connection. It also pushes resource data to the con-
nected meta-scheduler in case of changes in local resource
availability.

• Web Service Communication: We use Apache Axis2 as
the container for the different web services used to com-
municate with other domains. Axis2 provides the points of
entry for SOAP requests and stubs to initiate conversations
with other meta-schedulers.

Figure 8: Architecture of FIU meta-scheduler

4. Experimental Evaluation

We perform three sets of experiments to validate our meta-
scheduler implementations. In the first set, we measure the tim-
ings for different operations of the protocols for three sites with

their own implementations. In the second set, we run a larger-
scale scientific software simulating a realistic scenario in the
domain of weather forecasting. In the final set, we perform
a scalability study of global scheduling policies (i.e., job for-
warding strategies) in different scenarios.

4.1. Protocol Measurements
We test the implemented APIs for the IBM, FIU and BSC

versions of the meta-scheduler. The main operations supported
by the protocol are tested to perform a functional validation of
the meta-schedulers. In this experiment, we use a driver pro-
gram that generates requests for each of the tested operations,
and measure the timing.
For the resource information exchange protocol, each meta-

scheduler aggregates 100 resources and sends them back when
it receives the requestResourceData() call from the driver pro-
gram. The driver program then sends the same resource infor-
mation using the sendResourceData() call to meta-schedulers.
While we have specified the number of resources used for the
tests, the type of resources and the aggregation algorithms used
vary in different meta-schedulers.
For the job execution protocol, we send a probe job defined

by a JSDL document that runs the UNIX sleep command for 10
seconds. This allows us to measure the protocol itself, without
considering the actual job load.

4.1.1. BSC protocol measurements
We install an instance of eNANOS on a machine with dual

Intel(R) Pentium(R) 4 3.60GHz with 1024 KB of cache in each
core and 1 GB of main memory. The BSC column in Table 3
shows the results obtained from the tests using the driver pro-
gram.
Compared to two other meta-schedulers, BSC has longer de-

lays in most of the operations. The critical factor is the addi-
tional delay produced by the WS wrapper between other meta-
schedulers and the eNANOS LA Grid service. Eventually, we
will remove the wrapping layer by implementing the LA Grid
APIs directly within the eNANOS LA Grid GT4 service.
For the requestResourceData() operation, the delay time in-

cludes having resource information retrieved from the Resource
Properties without actual resource discovery. There is a back-
ground eNANOS service responsible for resource discovery
and populating the resource properties at a configurable inter-
val. The retrieved resource information is then transformed into
an aggregated form and packaged as part of the returned SOAP
message back to the caller. The sendResourceData() operation
involves depositing the resource information in the aggregated
form to the Resource Properties.

4.1.2. IBM protocol measurements
We install an instance of the IBM meta-scheduler on a ma-

chine that has dual AMD Opteron processors of 2.6GHz, 1024
KB cache and 2GB core memory. A DB2 database, as the re-
source repository, also runs on the same machine. The IBM
column in Table 3 shows the data collected on interactions
between the driver program and IBM meta-scheduler. We
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Operation Delay Time (milliseconds)
FIU→ BSC BSC→ FIU FIU→ IBM IBM→ FIU

openConn() 562 659 15 40
requestResourceData() 983 706 69 90

submitJob() 642 694 124 3162

Table 3: Delay across meta-scheduling sites

note that the operations submitJob(), requestResourceData()
and sendResourceData() involve operations on multiple tables
in the database such as for storing job information, and re-
trieving and storing resource data. The data shows that the
sendResourceData() operation consistently takes longer than
requestResourceData(). We suspect the delays are caused by
the database update overhead, as we store resource data re-
ceived by the sendResourceData() operation. To verify this,
we clean the database table by removing old resource entries,
and observe that the subsequent run shows reduction in timing
by 50% for sendResourceData() calls while timings for open-
Connect() and others remained similar.

4.1.3. FIU protocol measurements
An instance of FIU meta-scheduler is installed on a machine

with dual AMD Opteron processors of 2.6GHz, 1024 KB cache
and 2GB core memory, same type of machine as IBM meta-
scheduler installation. The same machine is also installed with
GridWay and GT4 services. The FIU column in Table 3 shows
FIU’s corresponding experimental results.
For the FIU meta-scheduler implementation, the connection

and job information are stored in memory without database ac-
cess (as opposed to IBM meta-scheduler) or invoking other ser-
vices (as is the case in the BSC meta-scheduler). Thus, the
measured delays for FIU are shorter than those of the BSC and
IBM meta-schedulers. The information for FIU meta-scheduler
resources is stored in a file. For the requestResourceData() op-
eration, resource information is read from the file and then ag-
gregated. For the sendRequestData() operation, the FIU meta-
scheduler keeps the aggregated data from othermeta-schedulers
in memory without file operations. For submitJob(), the FIU
meta-scheduler routes the job to GridWay and obtains a job ID
before returning to the caller.

4.2. Weather Research Scenario
Interoperability among the three meta-scheduler implemen-

tations is verified by running the Weather Research and Fore-
casting (WRF) model5 [16]. WRF is developed by the National
Center for Atmospheric Research and several other research
institutes as a tool for meteorologists to do regional forecast-
ing. The WRF model is an MPI application that follows the
SPMD (Single Program, Multiple Data) paradigm. Blind scal-
ing of WRF across the grid is generally counter-productive and
in most cases degrades the total running time of the model [17].

5http://www.wrf-model.org/

This is due to a design which assumes a low latency underly-
ing network and uses intensive communication among working
processes.
Different approaches to scaling out WRF have been dis-

cussed in [18], of which meta-scheduling is a paramount com-
ponent in the process. On this experiment, we show the advan-
tages of running jobs through the meta-scheduler compared to
running them directly on a local cluster. The meta-scheduler
can extend available resources by connecting to other peers and
delegating jobs to them based on different policies. Users don’t
need to do any additional work, since the interoperation proto-
col takes care of contacting other sites, keeping track of remote
resources and forwarding the actual jobs.
We compare three cases to assess the run-time improvements

of delegating jobs, and measure the overhead of the meta-
scheduler layer. We performed 4 different runs of a small fore-
casting region for different number of processors.
All experiments include three execution sites with different

resources. The local site consists of 8 Pentium 4 nodes at 3 GHz
with 1 Gb of RAM located at FIU in Miami. There is one re-
mote cluster at IBM TJ Watson center in New York, which has
4 IBM JS22 blades with two 4GHz dual core Power 6 proces-
sors and 16 Gb of memory. Finally, we also use the Marenos-
trum supercomputer at BSC, which is composed of 10,240 IBM
Power PC 970MP processors at 2.3 GHz (2560 JS21 blades)
with 20TB of main memory.
First, we measure the running time of the different WRF in-

stances at the local site without using a meta-scheduler. The
user executes WRF through mpirun (or equivalent command)
to spawn parallel tasks in the cluster.
Then, the same jobs are executed, but this time through a

meta-scheduler installed at the local site. Instead of running the
job by logging in the node and issuing the mpirun command,
now the user constructs a JSDL definition file with the com-
mand, and specifies how many nodes he/she wants to allocate
for the job. We use the SPMD extension of JSDL [7] to describe
the parallel environment to be used (MPI in this case) and the
number of nodes to use. The meta-scheduler is configured to
use the local cluster to run the job, obtaining similar results as
in the first case.
Finally, the four WRF instances are sent to the same meta-

scheduler at the local site, but in this case we change the
scheduling policy to forward jobs to another peer. The user
submits the job using the same method of submission and job
description file as in the previous case, but this time the meta-
scheduler contacts the remote instance running at IBM and for-
wards the jobs there. Then, the same steps are repeated with
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# nodes FIU IBM BSC
Run Time Run Time Run Time AVG Queuing Time

1 15,355 s N/A N/A N/A
2 8,595 s 2,271 s 3,640 s 47 s
4 5,059 s 1,280 s 2,571 s 45 s
8 2,942 s 775 s 1,285 s 41 s
16 N/A N/A 786 s 85 s
32 N/A N/A 390 s 101 s
64 N/A N/A 269 s 144 s

Table 4: Execution time of WRF in different sites

Sites Overheads # nodes
1 2 4 8 16 32 64

FIU
Run Time 100% 100% 100% 100%

N/A N/A N/AData Transfer 0% 0% 0% 0%
Protocol 0% 0% 0% 0%

FIU −→ IBM
Run Time 99.51% 99.02% 98.43% 97.42%

N/A N/A N/AData Transfer 0.46% 0.93% 1.49% 2.45%
Protocol 0.03% 0.05% 0.08% 0.13%

FIU −→ BSC
Run Time

N/A
97.82% 96.96% 94.17% 91.39% 85.68% 83.43%

Data Transfer 2.12% 2.96% 5.68% 8.39% 13.96% 16.16%
Protocol 0.05% 0.07% 0.15% 0.22% 0.36% 0.41%

Table 5: Relative WRF run time and overheads on FIU and forwarding from FIU to IBM/BSC

BSC.
Table 4 shows the run-times for the execution of WRF at the

different sites of our infrastructure and the average queuing time
at BSC. The queuing time at BSC depends on many parameters
such as the user, the system status or the queue used. How-
ever, we provide the average of the queuing times obtained for
WRF with a specific user and queue. We believe that they are
sufficient illustrative, as a matter of example.
Table 5 shows the relative overheads due to the experiment’s

execution, the meta-scheduler protocol, and the data transfer
for three cases: when the workload is executed locally, when
it is forwarded to IBM and when the same is done to BSC. As
it can be noticed, the processing and network overheads pro-
duced by the protocol when using the forwarding policy –an
average of 1.74 seconds– are negligible for a long running sci-
entific job such as this one. Data transfer costs are relatively low
for the experiments between FIU and IBM, specially due to the
fast connections between these two sites, and they increase for
the experiment between FIU and BSC due to a slower connec-
tion. The relative overhead of data transfer is specially notable
when more nodes are used and therefore computation run-time
is lower.
As already pointed out, the heterogeneous nature of our fed-

erated infrastructure results in different overheads depending on
the meta-scheduler technology used. Also, the different infras-
tructures behind the meta-schedulers result in different execu-
tion times for a given job request. Furthermore, the different
federated sites may use a local resource management system

(queuing system) that can potentially add an additional over-
head to execute a job request. This is the case of BSC, which
uses SLURM [19] to manage Marenostrum supercomputer.

4.3. Scalability Study
In order to evaluate the scalability of the proposed approach

for a large number of grid domains and job requests under dif-
ferent policies, we run simulation tools along with archived
HPC workload traces from production systems. We use the
Alvio simulator [20], a C++ event driven simulator that was
designed to study scheduling policies in different scenarios,
from HPC clusters to multi-grid systems. The simulator is ex-
tended to model the grid interoperability components discussed
in this paper. They include, for example, P2P communication
and aggregated resource information. Under each grid domain,
a meta-scheduling policy is responsible for managing the jobs
submitted to that domain. Furthermore, each site contains a set
of machines that model typical HPC local resources.

4.3.1. Workloads
In the present work, we use traces from the Grid Observa-

tory6, which collects, publishes, and analyzes data on the be-
havior of the EGEE7 grid. Since it constitutes one of the most
complex public grid traces, it allows us to study the scalabil-
ity of our approach. The frequency of request arrivals is much

6http://www.grid-observatory.org
7http://www.eu-egee.org
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Figure 9: Characteristics of the input trace

higher than other large grids such as Grid50008. Figure 9 shows
the job arrivals and CPU demand distribution of the trace, which
consists in two weeks of job submissions. It has a high arrival
rate of parallel jobs ranging from 1 to 64 CPUs.
Since jobs in Alvio are specified using Feitelson’s Standard

Workload Format (SWF)9 and the traces are in different formats
and include data that is not used, they are pre-processed before
being entered in the simulation framework. First, we convert
the input traces to SWF. We also combine the multiple files of
which they are composed into a single file. Then, we clean the
trace in SWF format in order to eliminate failed jobs, canceled
jobs and incomplete records. Finally, we generate the additional
requirements that are not included in the traces. For instance,
traces from Grid Observatory do not include required memory,
and the mapping between gLite (i.e., the EGEE Grid middle-
ware) and the Local Resource Management Systems (LRMS)
that contains such information is not available. Thus, we in-
clude memory requirements following the distribution of a trace
from Los Alamos National Lab (LANL) CM-5 log, and we in-
clude the disk demand using a combination of the job duration
with the CPU and memory usage, with a randomized factor.
For the remaining attributes we use percentages for each CPU
architecture and OS type, applying a random distribution by
bursts (sized from 3 to 6). Although the memory requirements
are obtained from a dated trace, we scale them to the charac-
teristics of our system model. We estimate that similar results
can be obtained using a resource requirement distribution from
other traces or recent models.

4.3.2. Scenarios
In our experiments, we define three different domain types,

FIU, IBM and BSC, that represent an approximation of the sys-
tems introduced previously. FIU and IBM domain types are

8http://www.grid5000.fr
9http://www.cs.huji.ac.il/labs/parallel/workload

composed of a similar number of resources (with 15 clusters
and around 1,000 CPUs available each) while BSC is a bit more
than two times larger. However, IBM resources are faster than
the other systems’ resources. In fact, we model the run-time
and queuing times of FIU, IBM and BSC systems based on the
data shown in Table 4. We also model the delay due to job for-
warding among meta-schedulers in the P2P network based on
the disk demand. We assume that the data associated to a job
request is transmitted to another domain over the network when
the job request is forwarded to another meta-scheduler.
In the experiments with multiple interoperating VOs we

model the same number of each FIU, IBM and BSC systems
(e.g., 9 VOs, which include 3 FIU systems, 3 IBM systems and
3 BSC systems) and the same relative number of jobs per VO
(e.g., the number of jobs for 9 VOs is 3 times larger than the
number of jobs for 3 VOs). In our experiments we simulate the
interoperation of up to 27 domains. Thereby, when we eval-
uate the full interoperable system with up to 27 domains, we
are considering more than a million and a half jobs, around 200
clusters, and more than 20,000 available processors.

4.3.3. Metrics
We use the following metrics for evaluating our strategies:

• Makespan (or workload execution time, which is the dif-
ference between the earliest time of submission of any of
the workload tasks, and the latest time of completion of
any of its tasks)

• Average bounded slowdown. We define bounded slow-
down (BSLD) for a given job:

BS LDjob = max
(

1,
runtime job + waittime job

max(runtimejob, threshold)

)

,

threshold = 60 seconds
Although a threshold of 10 seconds is used in many works
in the context of parallel job scheduling to limit the influ-
ence of very short jobs on the average bounded slowdown,
we define a threshold of 60 seconds, because in grid sce-
narios jobs typically take longer. We define the average
bounded slowdown, given the set of finished jobs:

AVG BS LD =
∑ f inished jobs
i=1 BS LD( jobi)
# f inished jobs

• Average utilization (CPU utilization)

• Average job forwarding between VOs, which is the ratio
between the total number of job forwarded and the total
number of job requests

4.3.4. Policies
We evaluate two different strategies for job submission in

interoperable grid systems that are widely used in literature:
“Round Robin” (which distributes equally the job requests
among meta-schedulers) and “Random” (which distributes the
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job requests among meta-schedulers randomly). We evalu-
ate two different types of job forwarding policies. In the first
case, we implement the “bestBrokerRank” job forwarding pol-
icy (“Inter” in the figures), which is based on matchmaking and
was proposed and evaluated in [21]. In particular, given a set
of job requirements and the resource information from differ-
ent meta-schedulers, it returns the meta-scheduler that matches
these requirements optimally. It considers the accumulated rank
value of a regular matchmaking algorithm [22] on the resources
of each meta-scheduler domain. The main difference between
“bestBrokerRank” and existing matchmaking approaches, such
as the one used in Condor, is that we select a meta-scheduler
based on statistical information rather than selecting a the re-
source that matches best the requirements to run a job request.
In the second case, we consider a variant of the “bestBroker-
Rank” policy that manages the resource information in aggre-
gated form (“Aggr” in the figures).
In addition to the forwarding policies, we also propose two

policies that are not based on matchmaking and we incorpo-
rate an additional consideration to the “bestBrokerRank” pol-
icy, which is a factor (α) for promoting the job originator do-
main. For example, a factor α=1.25 promotes 25% the job orig-
inator domain by increasing 25% its rank. Specifically, we con-
sider the following job forwarding policies:

• Inter: “bestBrokerRank” policy (with flat resource model).
Although the flat resourcemodel is not scalable (the size of
the resources grows linearly as shown in [21]), we use this
policy as reference. However, in our simulations we do not
consider the overhead due to transferring and processing
time of resource information

• Inter RR: if a meta-scheduler does not have enough re-
sources to run a job, the job is forwarded to another meta-
scheduler following a “Round Robin” policy

• Inter RM: if a meta-scheduler does not have enough re-
sources to run a job, the job is forwarded to another meta-
scheduler randomly

• Aggr 1.25: “bestBrokerRank” with aggregated resource
information and α=1.25 (the job originator domain is pro-
moted 25%)

• Aggr 1.10: “bestBrokerRank” with aggregated resource
information and α=1.10 (the job originator domain is pro-
moted 10%)

• Aggr 1.0: “bestBrokerRank” with aggregated resource in-
formation and α=1.00 (all brokers have the same priority)

Both Inter RR and Inter RM policies use a time to live (TTL)
parameter to avoid starvation. If a job has not been sched-
uled after being forwarded the specified number of times, it is
queued in the job originator domain to be re-scheduled. The
Aggr policies use the N-N resource aggregation model since
it is scalable in terms of resource information size and its ag-
gregation processing time is acceptable for multiple grids while
providing sufficient accuracy to implement job forwarding poli-
cies effectively as shown in [21].

4.3.5. System characteristics and job requirements evaluation
In this subsection, we study the different systems described

previously (FIU, IBM, BSC) and their interoperation (Inter).
To do this we run the same workload trace in each experiment.
Figure 10 shows the obtained results for each of these exper-
iments. Although in Section 4.2 we do not consider resource
requirements, we evaluate the performance impact when they
are included in job requests. In Figure 10, the Reqs series con-
sider job requirements and the NoReqs series do not consider
job requirements.
Figure 10a shows that the makespan is similar for all sys-

tems when there are no resource requirements; however, with
resource requirements the makespan obtained for FIU, IBM and
BSC systems is increased up to 15%. The results are consistent
with the empirical execution of WRF on the different systems
shown in Table 4. Since the Inter scenario has higher number of
resources of each type, the obtained makespan is significantly
shorter with resource requirements (almost 25% shorter than
FIU); however, it is very similar to the makespan obtained for
the other systems without resource requirements. In fact, the
makespan for Inter is higher than the makespan for IBM be-
cause Inter may run jobs on slower resources (e.g., from the FIU
system) in order to reduce the waiting time. Figure 10b shows
that the average BSLD is several times lower without resource
requirements because jobs have to wait for available resources
with specific characteristics. Since FIU resources are slower
than the other systems’ resources, jobs’ execution take longer,
which result in longer queue waiting times and therefore the
BSLD is especially high for FIU. Figure 10c shows that the av-
erage resource utilization is around 25% lower on average with
resource requirements. Also it shows that the average resource
utilization is especially lower for IBM with resource require-
ments due to faster resources result in resources being idle for
longer time.
The obtained results state that the interoperation between

VOs can perform better than the different systems individually
if resource requirements are considered along with the job re-
quests. Therefore, in order to study the scalability of our ap-
proach we consider resource requirements in the evaluation of
job submission and job forwarding policies.

4.3.6. Job submission strategies evaluation
In this subsection we evaluate both “bestBrokerRank” and

its variant that manages the resource information in aggregated
form with 3, 9 and 27 VOs.
Figure 11a shows that the makespan with the Aggr policy is

around 3.5% longer on average than the makespan with the In-
ter policy. It also shows that the makespan is similar with both
Random and RoundRobin policies (<1% on average). Figure
11b shows that the average BSLD is significantly lower with
the Inter policies with respect to the Aggr policy. Figure 11c
shows that the average utilization is similar with both job sub-
mission policies (<2% on average). Figure 11d shows that the
average job forwarding is higher with the Aggr policy due to ac-
curacy of the resource information is lower with respect to the
Inter policy; however, both Random and RoundRobin policies
present similar results (<1% on average).
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Figure 10: Performance results for different system configurations with and without resource requirements

Although the results are similar with both job submission
policies, the Random policy shows slightly better results than
the RoundRobin policy. One of the main reasons is that
RoundRobin only balances the number of jobs among VOs but
it considers neither the number of CPUs nor the load of the sys-
tems. It is worth mentioning that both policies follow the same
trend when the number of VO increases. Therefore, in the fol-
lowing subsection we use the Random job submission policy.

4.3.7. Job forwarding policies evaluation
In this subsection we evaluate all the forwarding policies de-

scribed previously with 3, 9 and 27 VOs.
Overall, Figure 12 shows that the Inter policy is much bet-

ter than the other ones. We use it as a reference; however, it
neither considers the processing time of the scheduling policies
with accurate resource information nor the transmission of the
resource information, which might be very big.
Figure 12a shows that the makespan with both Inter RR and

Inter RM policies is almost 10% higher with respect to the In-
ter policy. Using the Aggr policy, a higher value of the factor
α results in a shorter makespan. In fact, the makespan with
the Aggr 1.25 policy is only 3% longer with respect to the In-
ter policy, which means that promoting the job originator VO
is crucial for the matchmaking algorithm based on aggregated
resource information. Furthermore, the relative makespan in-
creases with higher number of VOs but the difference between
the makespan obtained with 3, 9 and 27 VOs is <1.5% on aver-
age. Figure 12b shows that the relative makespan and relative
BSLD follow a similar trend. Figure 12c shows that the average
utilization decreases (around 3.5% on average) when the num-

ber of VOs increases. Also it shows that with the Aggr 1.25
policy the average utilization is close to the average utiliza-
tion with the Inter policy. Figure 12d shows that the average
forwarding varies significantly with the different policies. In
general, the shorter makespan/BSLD the lower average job for-
warding; however, its variation with different number of VOs is
moderate.
Therefore, the obtained results state that our approach is scal-

able with up to 27 VOs with a large amount of jobs and re-
sources.

5. Related Work

In this section, we review existing work related to the major
aspects of grid interoperability presented in this paper: interop-
erability architectural designs, their performance studies, and
resource information models.

5.1. Grid Interoperability

The core concept of grid computing defines an architecture
to support shared access to resources provided by members
of virtual organizations (VO) that are formed by collaborative
data centers and institutions. Some examples of grids are Ter-
aGrid in US [23], GridX1 in Canada [24], Naregi in Japan10,
APACGrid in Australia [25], Garuda in India [26], Grid5000

10http://www.naregi.org
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Figure 11: Performance results obtained with different submission strategies using “bestBrokerRank” (Inter) and using aggregated
resource information (Aggr) for different number of VOs

in France [27], DAS-2 in the Netherlands11, D-Grid in Ger-
many12, e-Science in UK [28], and EGEE in Europe13. Note
that the majority of grids result from regional initiatives. There
is a need for interoperability among different grid systems to
form large grid environments such that users can access re-
sources across VOs. In other words, grid users should deal with
only one unique mechanism despite of the fact that they may
be able to access many different grid systems. On one hand,
several projects have attempted to unify user interfaces for ac-
cessing different supercomputing grids such as HPC-Europa
[3], DEISA14 and PRACE15, achieving the formation in the top
level of the European HPC ecosystem. On the other hand, dif-
ferent approaches have been started exploring the interoperabil-
ity of grid systems beyond user interface. Some examples are
briefly reviewed below:

• GridWay supports grid interoperability [29] through its
grid gateways [30]. User requests from one grid are for-
warded to others when the current one is overloaded. Grid-
Way is based on Globus [31], and they are experimenting
with GT4 and gLite3. Based on the GridWay approach,

11http://www.cs.vu.nl/das2/
12http://www.d-grid.de
13http://www.eu-egee.org/
14http://www.deisa.eu
15http://www.prace-project.eu

Leal et al. [32] presents a decentralizedmodel for schedul-
ing on federated grids to improve makespan and resource
performance. They evaluate five different configurations
using the GridSim toolkit [33] and conclude that using
their proposed Dynamic Objective and Advance Schedul-
ing (DO-AS) strategy on each grid of the federated grid
reduces the makespan of the applications and increases the
performance of the grid infrastructure.

• InterGrid [34] promotes interlinking different grid sys-
tems through economic-based peering agreements to en-
able inter-grid resource sharing. The IntraGrid Resource
Managers (IRM) play the role of resource brokers. The
InterGrid Gateway is responsible for establishing agree-
ments with other grids through their IRMs. Within In-
terGrid, Assuncao et al. [35] presents some performance
studies also using the GridSim simulator to evaluate some
cost-aware policies to redirect requests to other grids at
peak demand and using performance metric such as the
average weighted response time [36].

• The gLite Workload Management Service (WMS) pro-
vides functions of a resource broker. It accepts job
submission described in the gLite Description Language
(JDL) that was originally developed for the EU Data-
Grid project16 and is based on the Condor ClassAd lan-

16http://www.eu-datagrid.org
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Figure 12: Performance results obtained with different job forwarding policies for different number of VOs

guage [22]. Within EGEE, there are efforts to enable in-
teroperability between gLite and UNICORE [37] systems
[38][39].

• The Koala grid scheduler [5] focuses on data and pro-
cessor co-allocation. It is designed to work on DAS-2
multi-cluster and lately on DAS-3 and Grid5000. To inter-
connect these different grid domains, they use inter-broker
communication between different Koala instances. Their
policy is to use resources from a remote domain only if
the local one is saturated. They use delegated matchmak-
ing [40] to obtain the matched resources from one of the
peer Koala instances.

• VIOLA MetaScheduling Service [41] implements grid in-
teroperability via WS-Agreement [42] and provides co-
allocation of multiple resources based on reservations.
The main goal of VIOLA is to achieve the necessary inter-
operability using Service Level Agreement (SLA) mecha-
nisms.

Unlike Gridway and InterGrid, which support interoperabil-
ity of instances of the same resource brokering and local re-
source management, our interoperability design assumes that
there is common meta-brokering protocol and resource infor-
mation model implemented by each partnering grid resource
brokers, while other brokering and local resource management
systems can have heterogeneous designs and implementations.
We assume that JSDL is the common job description language

among different grids. Similar to Gridway and InterGrid, user
requests are forwarded to other grids if necessary. In this aspect,
our approach differs fromKoala and Viola, which acquire or co-
allocate resources from partnering grids when necessary. For
performance studies, we use Alvio simulator and study WRF
job performance in terms of makespan and bounded slowdown
for different job forwarding policies.
In addition to the above projects, there are also efforts like

the P-GRADE portal [43], Grid Interoperability Project (GRIP)
[44], and the Open Middleware Infrastructure Institute for Eu-
rope (OMII-Europe) project17. The P-GRADE portal tries to
bridge different grid and e-Science infrastructures by provid-
ing access to standard-based interoperable middleware. GRIP
was one of the first proposals enabling interoperability between
UNICORE and Globus Toolkit. OMII-Europe aims to signif-
icantly influence the adoption and development of open stan-
dards that facilitate interoperability between gLite and UNI-
CORE such as OGSA BES [45] or JSDL [7].
There are many projects with the goal of establishing an

open standard besides OMII-Europe. The Grid Scheduling Ar-
chitecture Research Group (GSA-RG) of Open Grid Forum
(OGF)18 is currently working on enabling grid scheduler in-
teraction. They are working to define a common protocol and
interface among schedulers enabling inter-grid resource usage,
using standard tools (JSDL, OGSA, WS-Agreement). How-

17http://www.omii-europe.org
18http://forge.ogf.org/sf/projects/gsa-rg
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ever, the group is paying more attention to agreements. They
proposed the Scheduling Description Language (SDL) to allow
specification of scheduling policies based on broker schedul-
ing objectives/capabilities (such as time constraints, job depen-
dencies, scheduling objectives, preferences, etc.). The Grid In-
teroperation Now Community Group (GIN-CG) of the OGF19
also addresses the problem of grid interoperability driving and
verifying interoperation strategies. They are more focused on
infrastructure with five sub-groups: information services, job
submission, data movement, authorization, and applications.
Aligned with GIN-CG, the OGF Production Grid Infrastructure
Working Group (PGI-WG)20 aims to formulate a well-defined
set of profiles and additional specifications. LA Grid exper-
iments with interoperability and supports shared resources to
optimization job execution. We hope that our experiences and
lessons learned can shed insights to the standard activities.
There are also two main activities of the OGF for job man-

agement: SAGA [46] and DRMAA [47]. SAGA provides a set
of interfaces used as the application programmingmodel for de-
veloping applications for execution in grid environments. DR-
MAA defines a set of generalized interfaces that applications
used to interact with distributed resource management middle-
ware. Both SAGA and DRMAA focus on applications. Our LA
Grid meta-brokering protocols focus on the interaction between
interoperability and not on the application management.

5.2. Resource Information Models

There are different models to represent resources for grid
systems. One of the most well known models is the GLUE
schema21 used to provide a uniform description of resources
and to facilitate interoperation between grid infrastructures. It
was conceived as a collaboration effort focusing on interoper-
ability between US and EU related projects. It was promoted
by DataTAG [48] (EU) and iVDGL22 (US) and received con-
tributions from DataGrid, Globus [31], PPDG23 and GriPhyn24.
More recently it was included in OGF within the GLUE Work-
ing Group. GLUE has been widely used, for example by
Globus Monitoring and Discovery Service (MDS) [10]. An-
other schema is provided by the UNICORE framework [37].
To the best of our knowledge, all of the grid interoperability

initiatives use a common resource model for interchanging in-
formation between grid domains. In LAGrid, we use a resource
model which is an extension of the one used in IBM Tivoli
Dynamic Workload Broker (TDWB) [49]. We also consider
the resource model in the aggregated form. The aggregation
of resource information is a usual way to save data transfers.
It has been widely used in different areas such as networking
[50]. Grid resource management systems have used aggrega-
tion mechanisms previously such as in Legion [9]. Legion uses

19http://forge.ogf.org/sf/projects/gin
20http://forge.ogf.org/sf/projects/pgi-wg
21http://forge.ogf.org/sf/projects/glue-wg
22http://igoc.ivdgl.indiana.edu
23http://www.ppdg.net
24http://www.griphyn.org

an object-based information store organization through the col-
lection objects. Information about multiple objects is aggre-
gated into these collection objects. Moreover, grid informa-
tion systems such as MDS or Ganglia [8] provide resource data
in aggregated form. MDS combines arbitrary GRIS (Grid Re-
source Information Service) services to provide aggregate view
that can be explored or searched. Ganglia is based on a hierar-
chical design, relies on a multicast-based listen/announce pro-
tocol to monitor state within clusters and uses a tree of point-to-
point connections amongst representative cluster nodes to fed-
erate clusters and aggregate their state. However, the existing
approaches to resource aggregation have not been applied to
scenarios where the interoperability between different grid sys-
tems is exploited.

6. Conclusions and Future Work

This paper introduces a cooperating meta-scheduling model
that has been implemented by three partnering institutions:
Barcelona Supercomputing Center’s prototype using eNANOS,
IBM Research prototype using the IBM product ITDWB, and
Florida International University’s prototype using the GridWay
from the open source community. Our current work focuses on
the meta-scheduling model and the mechanisms to support co-
operation: a set of protocols to connect the meta-schedulers,
submitting jobs between them, and resource information ex-
change. The data collected from the different implementations
is intended to validate the operations between the three sites
and the results from our simulations state that our solution is
scalable with a large amount of jobs and resources.
The presented prototypes serve as a platform for our current

research activities in the area of meta-scheduling, and will al-
low the exploration of new functions and protocols to optimize
the matching of jobs to remote domain resources. Moreover,
our platforms will also be used for LA Grid partners to explore
applicability of grid computing in areas such as hurricane mi-
gration, bioinformatics, and healthcare [6].
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