
Verifying the Behavioral Contracts among Components by means of Semantic
Web Techniques

Francisco-Edgar Castillo-Barrera
Engineering Faculty

Universidad Autónoma de San Luis Potosı́
Dr. Manuel Nava 8, Zona Universitaria poniente

78290 San Luis Potosı́, México
ecastillo@uaslp.mx

Héctor A. Durán-Limón
Department of Information Technologies

Universidad de Guadalajara
Periférico Norte 799, Mdulo L-308

45100, Zapopan, México
hduran@cucea.udg.mx

Carolina Medina-Ramı́rez
Department of Electrical Engineering

Universidad Autónoma Metropolitana, México
Av San Rafael Atlixco 186, Col.Vicentina

09340 Distrito Federal, México
cmed@xanum.uam.mx

Jose Emilio Labra Gayo
Department of Computer Science

Universidad de Oviedo
C/Valdes Salas s/n 33007-Oviedo, España

labra@uniovi.es

S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University (FIU)
11200 SW 8th St

Miami, USA
sadjadi@cs.fiu.edu

Abstract

Verification and validation of Component-Based systems
are important tasks to do during the whole component life-
cycle. In companies, verification techniques for component
matching are difficult to integrate into the standard software
development process because these can be time-consuming,
error-prone, and require specialized expertise. In this pa-
per we describe a semantic web framework for verifying
behavioral contracts: invariants, pre- and post-conditions.
In addition, we use the CORBA-IDL vocabulary with se-
mantics for this purpose. Our approach relies on a core on-
tology of software components and SPARQL queries. The
ontology captures the concepts, properties, relationships,
requirements, and software component functionality. This
is encoded using OWL DL, supported by the Pellet reasoner
for checking the ontology component consistency. The Re-
source Description Framework (RDF) triples (describing
components content in the form of subject-predicate-object
expressions) are queried using SPARQL, in order to comple-
ment the matching verification process. We use case exam-

ple and a prototype (a semantic framework called Chichen
Itza) to show the feasibility of our approach.

1. Introduction

Crnkovic and Larsson [11] define Component-Based
Software Engineering (CBSE) ”as an approach to soft-
ware development that relies on software reuse”. The goal
of CBSE is the rapid assembly of complex software sys-
tems using pre-fabricated software components. In order to
achieve this aim, methods for verifying the matching among
components are necessary. Such methods can be basically
classified in Formal, Semi-Formal, and Informal methods.
Formal methods such as Z [27] or VDM [24] require a
mathematical background. For that reason, in practice it is
not adopted by industry. Parnas says ”paraadoxically, suc-
cess stories reveal the failure of industry to adopt formal
methods as standard procedures; if using these methods was
routine, papers describing successful use would not be pub-
lished” [22][26]. Other problems to adopt formal methods

Figure 1. Visual assembled of software components in Chichen Itza framework.

are the time and the cost involved in the analysis of large-
scale component-based systems [32]. For the reasons given
above, formal methods require new ways to be applied. In
this work, we propose a verification technique based on
semantic techniques (Ontologies and SPARQL queries) in
conjunction with Chichen-Itza framework to mitigate this
problem. We propose an approach for verifying that the
contract of a required interface matches with the contract
of a provided interface. Our approach is able to check con-
tract conformance of syntactic and behavioral aspects [6].
The former invoves verifying the compatibility of the sig-
natures of a provided and a required interface. The latter
is in charge of certifying that the values of the parameters
are within a valid range and have a proper semantics. In this
work, we only consider sequential composition in which the
composed components are executed sequentially. We fol-
low an ontology-based approach which involves a formal
method but without the complexity of most formal meth-
ods. In this work, we consider the following definition: ”A
component is a reusable unit of deployment and composi-
tion that is accessed through an interface”[11]. In practice,
we have noted problems related to interface incompatibil-
ity are frequent. In particular such as incompatibility with
the semantics of operation parameters and interface opera-
tions (behavioral contracts [6]). We consider that the use of
a semantic matching approach (a software component on-

tology) could help to detect interface incompatibility before
the component-based system is deployed.

The rest of the paper is structured as follows. In Section
2 we present some related work. In Section 3 we briefly
explain semantic web techniques and its elements (Ontolo-
gies and SPARQL queries). Section 4 describes our seman-
tic approach for Verifying the Matching of Software Com-
ponents. In Section 5 we show the feasibility of our tech-
nique by describing an example. In Section 6 we draw some
concluding remarks. Finally, acknowledgments are given in
Section 7.

2 Related Work

There are several works about techniques for verifying
contracts, Brada [8], Mariani and Pezze [19], Tsai and Eric
Y.T. Juan [31], Cernuda, Cueva et all [12]. The most closely
related work about component contract verification was
made by Barnett and Schulte [3]. They propose a method
for implementing behavioral interface specifications on the
.NET Platform using contracts to check the conformance of
an implementation class and they define the AsmL speci-
fication language. In contrast with their work, our model
is independent of plataform and our semantic specification
language is supported by a domain ontology about soft-
ware components. Another related work was made by Lau

and Ukis [18]. They enrich component’s interface with
metadata which is used for preventing component’s con-
flicts with the target execution environment. Their work
is focused on .NET and J2EE frameworks. The ontolo-
gies based on software component and matching are mostly
represented by work of Claus Pahl at Dublin City Univer-
sity [21] who made an ontology for software component
matching. His ontology is based on DAML+OIL [4] logic
languange. Our ontology has an advance in logic and it
is based on OWL-DL logic model. We have found other
works about software component ontologies [30][20], but
they need extra information to be able to verify contracts
among components.

Figure 2. Semantic Verification Process

3. Semantic Web Techniques

3.1 Ontologies

An ontology [15][28] is a knowledge representation
which defines the basic terms and relations comprising the
vocabulary of a topic area, as well as the rules for combin-
ing terms and relationships used to define extensions to the
vocabulary. In our case, the domain area is software com-
ponents. In particular, the ontology is able to manage all
attributes for software components, establishing links be-
tween two components that can be connected by means of
its interfaces.

3.2 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF), this is a W3C Recommendation
[34]. We use Web Ontology Language (OWL) [35] which
extends RDF and RDFS. We use the disjointWith property

to verify compatibility among the instances created by the
user and its properties. We selected OWL DL language be-
cause we can assure that all conclusions given by the rea-
soner are computable and decidability. Example using RDF
triples (Parameter class and hasDataTypeParameter object
property) is showed below.

:Parameter a owl:Class .
:hasDataTypeParameter rdfs:domain

:Parameter .
:hasDataTypeParameter rdfs:range

:DataType .

4 Chichen Itza: verifying the matching of
software contracts

Chichen Itza 1 is a Semantic Framework which it con-
sists of a visual editor of software architectures. See Fig.1.
The tool makes use of the library Flamingo and the Ribbon
component [16] implemented in Java. The process to verify
a matching among components is very easy for the user.

4.1 A Core Ontology for Software Components

A Software Component Ontology was created for cap-
turing and verifying information about the input domain
models during the Architectural Design [14]. It was writ-
ten using notation 3 or n3 [5] which is similar to RDF in
its XML syntax, but more easy to understand. This ontol-
ogy consisted of 20 classes, 28 Object Properties, 36 Data
Properties. The ontology was written using n3 notation,
it is used by RDFS and OWL DL logic model. The main
classes are: ComponentType, Interface, Method, DataType,
Parameter, ComponentModel, PreCondition and PostCon-
dition. The Ontology is built by means of classes and re-
lations among concepts. These concepts and classes corre-
spond to the specification of an abstract data type and a set
of methods that operate on that abstract data type. Each
method is specified by an interface, type declarations, a
pre-condition, and post-condition [11]. In addition, there
are two types of interfaces (provided and required). The
interface of a method describes the syntactic specification
of the method. Interfaces define the methods used in con-
tracts and composition. The typing information describes
the types of input and output or both parameters and inter-
nal (local) variables. All of the above is represented in our
ontology (class Type, class Parameter, etc.). The most im-
portant part to consider in our ontology are the Conditions
(Pre and Post). The Pre-condition describes the condition
of the variables prior to the execution of the method whose
behavior is described by the Post-condition.

1Chichen Itza is the name of a large pre-Columbian city built by the
Maya civilization

Figure 3. Currency invariant verification using a SPARQL query

4.1.1 Evaluating the core ontology created

The ontology developed has been evaluated in an infor-
mal and formal way. Regarding the former, the ontology
was evaluated by the developers using the Pellet reasoner
[23] to check the consistency of the ontology. The sec-
ond evaluation applied to the ontology is based on the work
of Gómez-Pérez [4] who establishes five criteria (consis-
tency, completeness, conciseness, expandability and sen-
sitiveness). The number of concepts and their relations
among them, allow us to check the ontology consistency
with less steps than other kind of ontologies.

4.2 Verification of Contract Matching

Our definition about matching is based on interfaces as
contracts by Szyperski [29]. Interface specifications are
contracts between a client of an interface and a provider of
an implementation of the interface. A contract states what
the client needs to do to use the interface. It also states
what the provider requires to implement to meet the services
promised by the interface. We define Contract Matching
among components when we say there is a componet in-
terface match when the provided interface of a component
satisfies the requirements of the required interface of an-
other component. Such a match is validated for sytactic and
functional semantic aspects. In the first case, it is checked
whether the provided interface includes at least the same list
of methods defined in the required interface. We follow a
structural approach whereby the names of the interface op-
erations can be different but the types of the parameters and
the order of the paramenters must be compliant. In the case
of functional semantic it is validated using SPARQL queries
about Invariants, Pre- and PostCondition of methods. See
Figure 4. Conditions defined for each method has to be
matched with the same variable, logic operator and value.
We verify restrictions and assumptions at construction time,
in a completely static manner, prior to the testing stages. Se-
mantic verification is the process which uses Semantic Web

Techniques (Ontologies and SPARQL queries) to guarantee
compliance with contractual agreements. The semantics of
an operation are described in an interface (contract). The
only task for the user before to apply our model is to define
the vocabulary of his domain and semantics. He introduces
his model into the framework by means of a file or by the
menus that allows us to do an automatic evaluation by us-
ing the Pellet reasoner [23] which checks inconsistencies.
Chichen Itza transforms his vocabulary from a text file into
an ontology instances and its relations. The instances are
created from classes defined in the software component on-
tology.

4.3 Using CORBAL-IDL vocabulary with Seman-
tics

CORBA(Common Object Request Broker
Architecture)[33] is a standard created by the Object
Management Group (OMG)[10] that enables software
components written in different computer languages for
working among them by means of their interfaces. These
interfaces are described using the Interface Definition
Language (IDL). In our semantic model, we need to receive
the component interfaces written using the concepts and
properties defined in the software component ontology
and Bradas affirm that ”developing CORBA components
is rather tedious by today’s standards due to its IDL-first
approach” [8]. For the reasons above, we have decided to
use the keywords of the CORBA-IDL with elements of the
ontology and supported with Chichen Itza framework. For
example, ComponentType, Interface, Method, Parameter
and hasNumParameters are keywords. Part of the semantic
ATM-IDL vocabulary. It is showed below.

:Atm a :ComponentType .
:Bank a :ComponentType .
:IAtmClient a :Interface .
:IAtmClient :hasMethod :deposit .
:IBank a :Interface .

Figure 4. Matching the precondition about the amount

:IBank :hasMethod :withdrawal .
:deposit a :Method .
:withdrawal a :Method .
:amout a :Parameter .
:idClient a :Parameter .
:deposit :hasNumParameters 2 .
:withdrawal :hasNumParameters 3 .
:deposit :hasPrecond :condition1 .
:deposit :hasPostcond :condition3 .

:

In the code above we would like to emphazise that there
are some instaces of clases (Atm and Bank), some classes
(ComponentType, Parameter, Interface and Method), some
object properties (hasMethod, hasPrecond and hasPost-
cond) and just one data type property (hasNumParameter).
In particular, the notation :deposit :hasNumParameters 2
means that the method deposit has exactly 2 parameters.

4.4 Using The Pellet Reasoner

Pellet [23] is an open-source Java based OWL DL rea-
soner. In our verification process we use Pellet for checking
the consistency of the ontology. Pellet gives an explanation
when an inconsistency is detected. Restrictions can be ex-
pressed into an ontology. For instance, the following code
states that one component has at least 1 interface.

:Component rdfs:subClassOf
[a owl:Restriction ;

owl:onProperty :hasInterface ;
owl:cardinality 1].

In contrast with the Logic Programming paradigm, we can
check types using ontologies. Besides, in the matching pro-
cess subtypes can be accepted as parameters. See code be-
low.

:Int a owl:Class .
:ShortInt rdfs:subClassOf :Int .

The disjointWith property allows for verifying restric-
tions in the input model (Semantic CORBA-IDL file). For
example, we could establish that a component made in .Net
can not run in the Linux operating system and the EJB com-
ponent model is not compatible with the MS COM model.
Defining disjointWith properties is also possible [1].

:Linux rdfs:subClassOf :OperatingSystem ;
owl:disjointWith :Windows .

:EJB rdfs:subClassOf :ComponentModel ;
owl:disjointWith :MS_COM .

All properties defined in the Ontology and blank nodes
are checked by the reasoner (Pellet) during the consistency
verification process.

4.5 Behavioral Contract verification using
SPARQL

At this moment the complete verification is not possible
using only the reasoner. For more complex checking we can
apply anothers actions such as: production rules [13]. We
decided to explore semantic queries in SPARQL [25] insted
of production rules. The second step after the reasoner have
checked the ontology consistency is to apply a SPARQL
query. We defined specific queries that evaluate and verify
the contract information of the components. Such queries
are completely transparent to the user who only needs to
provide the contracts of the components. We have used
Jena API [17] and Java language [9] for programming and
NetBeans IDE 7.0 [2]. SPARQL is similar to the database
SQL but for ontologies. Besides, we can use variables in the
queries, constraints, filtering information, logic operators, if
statements and more. Lines are linked by variables which
begin with a question mark. The same name of variable im-
plies the same value to look for in the query. The Jena API
allowed us to use SPARQL queries in our framework pro-
grammed in Java language. Part of the query which verifies
the Precondition matching is showed below.

Figure 5. Semantic IDL help using the ontology

PREFIX : <http://www.ejemplo.org/#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?Interface1 ?Interface2
?Match_Method ?Match_Precond

{
?Interface1 :typeInterface :required ;

:hasMethod ?Method1 .
?Method1 :hasParameter ?par1 ;

:hasMethodName ?name1 ;
:hasNumParameters ?numpar1 .

?par1 :hasIndexOrder ?pos1 ;
:hasDataTypeParameter ?partype1 .

?Method1 :hasPrecond ?precond1 .
?precond1 :hasVariable ?var1 .
?precond1 :hasOperator ?opr1 .
?opr1 :symbolOperator ?oprname1 .
?precond1 :hasNumber ?num1 .

:
} order by ?Match_Method

An additional benefit of using ontologies and SPARQL
queries has been the extra information (metadata) to offer
support for writing the IDL file. See Figure 5.

5 Automated Teller Machine: example

ATM is a machine at a bank branch or other location
which enables customers to perform basic banking activi-
ties. The component model used for describing the ATM
was written using UML 2 notation [7], and is shown in fig-
ure 6. The vocabulary of the input model is created by the
user who selects classes and relation among concepts and he
creates his instances. In this case the input model (semantic
IDL file) only has the information of 5 software compo-
nents and we can create its instances and relations among
them using the Chichen Itza’s menus.

Figure 6. UML ATM Component-based system

6. Conclusions

In this paper we have presented and described a se-
mantic technique for checking the Matching of Software
Components. In comparision with other formal methods,
this semantic technique, based on logic (ontology), a rea-
soner and a set of SPARQL queries offers an easy way
to check matching among components and verifying the
model proposed. This model can be extended and enriched
with more concepts that rely on architectural design and
non-functional requirements (QoS). The Ontology was ex-
pressed in a logic-based language (OWL DL), enabling de-
tailed, sound, meaningful distinctions to be made among the
contracts expressed as classes, properties and relations. The
OWL DL ontology proposed is checked with the Pellet rea-
soner. Because it has a finite complexity. The use of a core
domain ontology permits us to search for specific compo-
nent information using intelligent techniques like SPARQL
queries. Extending the ontology with no functional proper-
ties (Quality of Services attributes), Design Patterns and ob-
ject properties (hasInvoke, hasResponse, etc.) for dynamic
behaviour are key points for our future work.

7 Acknowledgments

This material is partly based upon work supported by
the National Science Foundation under Grant No. OISE-
0730065. I would like to express my deepest thanks to
Comision Mexico-Estados Unidos para el Intercambio Ed-
ucativo y Cultural (COMEXUS) through the Fulbright Pro-
gramme, for gave me a grant to support my research in Mi-
ami, Florida without which this work would not have been
possible, and Florida International University (FIU), School
of Computing and Information Sciences. In particular, I
would like to thank to Dr. S. Masoud Sadjadi and his team
for their fruitful discussions and support for my research.

References

[1] F. E. Antoniou Grigoris and V. H. Frank. Introduction to
semantic web ontology languages. 2005.

[2] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans,
K. Ganfield, D. Green, K. Haase, E. Jendrock, J. Jullion-
ceccarelli, and G. Wielenga. The j2ee TM(tm) 1.4 tutorial
for netbeans TM(tm) ide 4.1 for sun java system application
server platform edition 8.1.

[3] M. Barnett and W. Schulte. Contracts, components, and
their runtime verification on the .net platform. J. Systems
and Software, Special Issue on Component-Based Software
Engineering, 2002.

[4] S. Bechhofer, C. A. Goble, and I. Horrocks. Daml+oil is not
enough. In SWWS, pages 151–159, 2001.

[5] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web
tutorial using n3. In Twelfth International World Wide Web
Conference, 2003.

[6] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer, 32(7):38–
45, 1999.

[7] M. Bjerkander and C. Kobryn. Architecting systems with
uml 2.0. Software, IEEE, 20(4):57–61, 2003.

[8] P. Brada. The cosi component model: Reviving the black-
box nature of components. Component-Based Software En-
gineering, pages 318–333, 2008.

[9] P. J. Clarke, D. Babich, T. M. King, and B. M. G. Kibria.
Model checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16:1512–1542, 1994.

[10] O. CORBA and I. Specification. Object management group,
1999.

[11] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House computing library,
Norwood, MA, 2002.

[12] A. del Rı́o, J. Gayo, and J. Lovelle. Verificación y validación
mediante un modelo de componentes. In Actas del Simposio
Iberoamericano de Sistemas de Información e Ingenierı́a del
Software en la Sociedad del Conocimiento (SISOFT-2001),
Bogotá (Colombia), pages 29–31.

[13] A. C. del Rı́o, J. E. L. Gayo, and J. M. C. Lovelle. A model
for integrating knowledge into component-based software
development. KM - SOCO, pages 26–29, 2001.

[14] A. Eden and R. Kazman. Architecture, design, implemen-
tation. In proceedings of the 25th International Conference
on Software Engineering, pages 149–159. IEEE Computer
Society, 2003.

[15] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. pages 907–928. 1995.

[16] Java.net. Flamingo. http://java.net/projects/flamingo/, 2010.
[17] Jena. Jena a semantic web framework for java. 2000.
[18] K. Lau and V. Ukis. Deployment contracts for software com-

ponents. Preprint, 36, 2006.
[19] L. Mariani and M. Pezze. A technique for verifying

component-based software3. Electronic Notes in Theoret-
ical Computer Science, 116:17–30, 2005.

[20] X. Nianfang, Y. Xiaohui, and L. Xinke. Software compo-
nents description based on ontology. In Proceedings of the
2010 Second International Conference on Computer Mod-
eling and Simulation - Volume 04, ICCMS ’10, pages 423–
426, Washington, DC, USA, 2010. IEEE Computer Society.

[21] C. Pahl. An ontology for software component matching. vol-
ume 9, pages 169–178. Springer-Verlag, Berlin, Heidelberg,
2007.

[22] D. Parnas. Really rethinking ’formal methods’. Computer,
43(1):28 –34, Jan. 2010.

[23] B. Parsia and E. Sirin. Pellet: An owl dl reasoner. In In
Proceedings of the International Workshop on Description
Logics, 2004.

[24] J. P. Paul, P. and J. I. Siddiqui. Formal Methods State of the
Art and New Directions. Springer, Springer London Dor-
drecht Heidelberg New York, 2009.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of sparql. The Semantic Web-ISWC 2006, pages 30–
43, 2006.

[26] G. Reed. Exploiting formal methods in the real world: a
case study of an academic spin-off company. In Proceedings
of Modelling Software System Structures in a fastly moving
scenario, 2000.

[27] J. Spivey. Understanding Z: a specification language and its
formal semantics, volume 3. Cambridge Univ Pr, 1988.

[28] S. H. Staab S., Studer R. and Y. Sure. Knowledge processes
and ontologies. volume 16, pages 26–34. Jan-Feb 2001.

[29] C. Szyperski, D. Gruntz, and S. Murer. Component soft-
ware: beyond object-oriented programming. Addison-
Wesley Professional, 2002.

[30] A. Talevski, P. Wongthongtham, and S. Komchaliaw. To-
wards a software component ontology. In Proceedings of
the 10th International Conference on Information Integra-
tion and Web-based Applications & Services, iiWAS ’08,
pages 503–507, New York, NY, USA, 2008. ACM.

[31] J. Tsai and E. Juan. Compositional approach for model-
ing and verification of component-based software systems.
In Proceedings of the 2000 Monterey Workshop on Model-
ing Software System Structures in a Fast Moving Scenario,
pages 13–16. Citeseer.

[32] J. J. P. Tsai and E. Y. T. Juan. Compositional approach for
modeling and verification of component-based software sys-
tems. In Proceedings of Modelling Software System Struc-
tures in a fastly moving scenario, 2000.

[33] S. Vinoski. Distributed object computing with corba. C++
Report, 5(6):32–38, 1993.

[34] W3C. http://www.w3.org/consortium/. 1994.
[35] W3C. Owl web ontology language, 1994.

