Abstract

Verification and validation of Component-Based systems are important tasks to do during the whole component life-cycle. In companies, verification techniques for component matching are difficult to integrate into the standard software development process because these can be time-consuming, error-prone, and require specialized expertise. In this paper we describe a semantic web framework for verifying behavioral contracts: invariants, pre- and post-conditions. In addition, we use the CORBA-IDL vocabulary with semantics for this purpose. Our approach relies on a core ontology of software components and SPARQL queries. The ontology captures the concepts, properties, relationships, requirements, and software component functionality. This is encoded using OWL DL, supported by the Pellet reasoner for checking the ontology component consistency. The Resource Description Framework (RDF) triples (describing components content in the form of subject-predicate-object expressions) are queried using SPARQL, in order to complement the matching verification process. We use case example and a prototype (a semantic framework called Chichen Itza) to show the feasibility of our approach.

1. Introduction

Crnkovic and Larsson [11] define Component-Based Software Engineering (CBSE) "as an approach to software development that relies on software reuse". The goal of CBSE is the rapid assembly of complex software systems using pre-fabricated software components. In order to achieve this aim, methods for verifying the matching among components are necessary. Such methods can be basically classified in Formal, Semi-Formal, and Informal methods. Formal methods such as Z [27] or VDM [24] require a mathematical background. For that reason, in practice it is not adopted by industry. Parnas says "paradoxically, success stories reveal the failure of industry to adopt formal methods as standard procedures; if using these methods was routine, papers describing successful use would not be published" [22][26]. Other problems to adopt formal methods...
are the time and the cost involved in the analysis of large-scale component-based systems [32]. For the reasons given above, formal methods require new ways to be applied. In this work, we propose a verification technique based on semantic techniques (Ontologies and SPARQL queries) in conjunction with Chichen-Itza framework to mitigate this problem. We propose an approach for verifying that the contract of a required interface matches with the contract of a provided interface. Our approach is able to check contract conformance of syntactic and behavioral aspects [6]. The former involves verifying the compatibility of the signatures of a provided and a required interface. The latter is in charge of certifying that the values of the parameters are within a valid range and have a proper semantics. In this work, we only consider sequential composition in which the composed components are executed sequentially. We follow an ontology-based approach which involves a formal method but without the complexity of most formal methods. In this work, we consider the following definition: "A component is a reusable unit of deployment and composition that is accessed through an interface" [11]. In practice, we have noted problems related to interface incompatibility are frequent. In particular such as incompatibility with the semantics of operation parameters and interface operations (behavioral contracts [6]). We consider that the use of a semantic matching approach (a software component ontology) could help to detect interface incompatibility before the component-based system is deployed.

The rest of the paper is structured as follows. In Section 2 we present some related work. In Section 3 we briefly explain semantic web techniques and its elements (Ontologies and SPARQL queries). Section 4 describes our semantic approach for Verifying the Matching of Software Components. In Section 5 we show the feasibility of our technique by describing an example. In Section 6 we draw some concluding remarks. Finally, acknowledgments are given in Section 7.

2 Related Work

There are several works about techniques for verifying contracts, Brada [8], Mariani and Pezze [19], Tsai and Eric Y.T. Juan [31], Cernuda, Cueva et all [12]. The most closely related work about component contract verification was made by Barnett and Schulte [3]. They propose a method for implementing behavioral interface specifications on the .NET Platform using contracts to check the conformance of an implementation class and they define the AsmL specification language. In contrast with their work, our model is independent of platform and our semantic specification language is supported by a domain ontology about software components. Another related work was made by Lau
and Ukis [18]. They enrich component’s interface with metadata which is used for preventing component’s conflicts with the target execution environment. Their work is focused on .NET and J2EE frameworks. The ontologies based on software component and matching are mostly represented by work of Claus Pahl at Dublin City University [21] who made an ontology for software component matching. His ontology is based on DAML+OIL [4] logic language. Our ontology has an advance in logic and it is based on OWL-DL logic model. We have found other works about software component ontologies [30][20], but they need extra information to be able to verify contracts among components.

3. Semantic Web Techniques

3.1 Ontologies

An ontology [15][28] is a knowledge representation which defines the basic terms and relations comprising the vocabulary of a topic area, as well as the rules for combining terms and relationships used to define extensions to the vocabulary. In our case, the domain area is software components. In particular, the ontology is able to manage all attributes for software components, establishing links between two components that can be connected by means of its interfaces.

3.2 SPARQL Query Language

SPARQL is a query language for the Resource Description Framework (RDF), this is a W3C Recommendation [34]. We use Web Ontology Language (OWL) [35] which extends RDF and RDFS. We use the disjointWith property to verify compatibility among the instances created by the user and its properties. We selected OWL DL language because we can assure that all conclusions given by the reasoner are computable and decidability. Example using RDF triples (Parameter class and hasDataTypeParameter object property) is showed below.

```plaintext
:Parameter a owl:Class .
:hasDataTypeParameter rdfs:domain :Parameter .
:hasDataTypeParameter rdfs:range :DataType .
```

4. Chichen Itza: verifying the matching of software contracts

Chichen Itza ¹ is a Semantic Framework which it consists of a visual editor of software architectures. See Fig.1. The tool makes use of the library Flamingo and the Ribbon component [16] implemented in Java. The process to verify a matching among components is very easy for the user.

4.1 A Core Ontology for Software Components

A Software Component Ontology was created for capturing and verifying information about the input domain models during the Architectural Design [14]. It was written using notation n3 [5] which is similar to RDF in its XML syntax, but more easy to understand. This ontology consisted of 20 classes, 28 Object Properties, 36 Data Properties. The ontology was written using n3 notation, it is used by RDFS and OWL DL logic model. The main classes are: ComponentType, Interface, Method, DataType, Parameter, ComponentModel, PreCondition and PostCondition. The Ontology is built by means of classes and relations among concepts. These concepts and classes correspond to the specification of an abstract data type and a set of methods that operate on that abstract data type. Each method is specified by an interface, type declarations, a pre-condition, and post-condition [11]. In addition, there are two types of interfaces (provided and required). The interface of a method describes the syntactic specification of the method. Interfaces define the methods used in contracts and composition. The typing information describes the types of input and output or both parameters and internal (local) variables. All of the above is represented in our ontology (class Type, class Parameter, etc.). The most important part to consider in our ontology are the Conditions (Pre and Post). The Pre-condition describes the condition of the variables prior to the execution of the method whose behavior is described by the Post-condition.

¹Chichen Itza is the name of a large pre-Columbian city built by the Maya civilization
4.1 Evaluating the core ontology created

The ontology developed has been evaluated in an informal and formal way. Regarding the former, the ontology was evaluated by the developers using the Pellet reasoner [23] to check the consistency of the ontology. The second evaluation applied to the ontology is based on the work of Gómez-Pérez [4] who establishes five criteria (consistency, completeness, conciseness, expandability and sensitivity). The number of concepts and their relations among them, allow us to check the ontology consistency with less steps than other kind of ontologies.

4.2 Verification of Contract Matching

Our definition about matching is based on interfaces as contracts by Szyperski [29]. Interface specifications are contracts between a client of an interface and a provider of an implementation of the interface. A contract states what the client needs to do to use the interface. It also states what the provider requires to implement to meet the services promised by the interface. We define Contract Matching among components when we say there is a component interface match when the provided interface of a component satisfies the requirements of the required interface of another component. Such a match is validated for syntactic and functional semantic aspects. In the first case, it is checked whether the provided interface includes at least the same list of methods defined in the required interface. We follow a structural approach whereby the names of the interface operations can be different but the types of the parameters and the order of the parameters must be compliant. In the case of functional semantic it is validated using SPARQL queries about Invariants, Pre- and PostCondition of methods. See Figure 4. Conditions defined for each method has to be matched with the same variable, logic operator and value. We verify restrictions and assumptions at construction time, in a completely static manner, prior to the testing stages. Semantic verification is the process which uses Semantic Web Techniques (Ontologies and SPARQL queries) to guarantee compliance with contractual agreements. The semantics of an operation are described in an interface (contract). The only task for the user before to apply our model is to define the vocabulary of his domain and semantics. He introduces his model into the framework by means of a file or by the menus that allows us to do an automatic evaluation by using the Pellet reasoner [23] which checks inconsistencies. Chichen Itza transforms his vocabulary from a text file into an ontology instances and its relations. The instances are created from classes defined in the software component ontology.

4.3 Using CORBA-IDL vocabulary with Semantics

CORBA (Common Object Request Broker Architecture) [33] is a standard created by the Object Management Group (OMG) [10] that enables software components written in different computer languages for working among them by means of their interfaces. These interfaces are described using the Interface Definition Language (IDL). In our semantic model, we need to receive the component interfaces written using the concepts and properties defined in the software component ontology and Bradas affirm that "developing CORBA components is rather tedious by today's standards due to its IDL-first approach" [8]. For the reasons above, we have decided to use the keywords of the CORBA-IDL with elements of the ontology and supported with Chichen Itza framework. For example, ComponentType, Interface, Method, Parameter and hasNumParameters are keywords. Part of the semantic ATM-IDL vocabulary. It is showed below.

```
:Atm a :ComponentType .
:Bank a :ComponentType .
:IAtmClient a :Interface .
:IAtmClient a :Interface .
```

![Figure 3. Currency invariant verification using a SPARQL query](image)
Figure 4. Matching the precondition about the amount

:IBank :hasMethod :withdrawal .
:deposit a :Method .
:withdrawal a :Method .
:amout a :Parameter .
:idClient a :Parameter .
:deposit :hasNumParameters 2 .
:withdrawal :hasNumParameters 3 .
:deposit :hasPrecond :condition1 .
:deposit :hasPostcond :condition3 .

In the code above we would like to emphasize that there are some instances of classes (Atm and Bank), some classes (ComponentType, Parameter, Interface and Method), some object properties (hasMethod, hasPrecond and hasPostcond) and just one data type property (hasNumParameter). In particular, the notation :deposit :hasNumParameters 2 means that the method deposit has exactly 2 parameters.

4.4 Using The Pellet Reasoner

Pellet [23] is an open-source Java based OWL DL reasoner. In our verification process we use Pellet for checking the consistency of the ontology. Pellet gives an explanation when an inconsistency is detected. Restrictions can be expressed into an ontology. For instance, the following code states that one component has at least 1 interface.

:Component rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty :hasInterface ;
owl:cardinality 1].

In contrast with the Logic Programming paradigm, we can check types using ontologies. Besides, in the matching process subtypes can be accepted as parameters. See code below.

:Int a owl:Class .
:ShortInt rdfs:subClassOf :Int .

The disjointWith property allows for verifying restrictions in the input model (Semantic CORBA-IDL file). For example, we could establish that a component made in .Net can not run in the Linux operating system and the EJB component model is not compatible with the MS COM model. Defining disjointWith properties is also possible [1].

:Linux rdfs:subClassOf :OperatingSystem ;
owl:disjointWith :Windows .
:EJB rdfs:subClassOf :ComponentModel ;
owl:disjointWith :MS_COM .

All properties defined in the Ontology and blank nodes are checked by the reasoner (Pellet) during the consistency verification process.

4.5 Behavioral Contract verification using SPARQL

At this moment the complete verification is not possible using only the reasoner. For more complex checking we can apply another actions such as: production rules [13]. We decided to explore semantic queries in SPARQL [25] instead of production rules. The second step after the reasoner have checked the ontology consistency is to apply a SPARQL query. We defined specific queries that evaluate and verify the contract information of the components. Such queries are completely transparent to the user who only needs to provide the contracts of the components. We have used Jena API [17] and Java language [9] for programming and NetBeans IDE 7.0 [2]. SPARQL is similar to the database SQL but for ontologies. Besides, we can use variables in the queries, constraints, filtering information, logic operators, if statements and more. Lines are linked by variables which begin with a question mark. The same name of variable implies the same value to look for in the query. The Jena API allowed us to use SPARQL queries in our framework programmed in Java language. Part of the query which verifies the Precondition matching is showed below.
SELECT DISTINCT ?Interface1 ?Interface2
 ?Match_Method ?Match_Precond
{
 ?Interface1 :typeInterface :required ;
 :hasMethod ?Method1 .
 ?Method1 :hasParameter ?par1 ;
 :hasMethodName ?name1 ;
 :hasNumParameters ?numpar1 .
 ?par1 :hasIndexOrder ?pos1 ;
 :hasDataTypeParameter ?partype1 .
 ?precond1 :hasVariable ?var1 .
 ?precond1 :hasOperator ?opr1 .
 ?precond1 :hasNumber ?num1 .
}
order by ?Match_Method

An additional benefit of using ontologies and SPARQL queries has been the extra information (metadata) to offer support for writing the IDL file. See Figure 5.

5 Automated Teller Machine: example

ATM is a machine at a bank branch or other location which enables customers to perform basic banking activities. The component model used for describing the ATM was written using UML 2 notation [7], and is shown in figure 6. The vocabulary of the input model is created by the user who selects classes and relation among concepts and he creates his instances. In this case the input model (semantic IDL file) only has the information of 5 software components and we can create its instances and relations among them using the Chichen Itza's menus.

6. Conclusions

In this paper we have presented and described a semantic technique for checking the Matching of Software Components. In comparison with other formal methods, this semantic technique, based on logic (ontology), a reasoner and a set of SPARQL queries offers an easy way to check matching among components and verifying the model proposed. This model can be extended and enriched with more concepts that rely on architectural design and non-functional requirements (QoS). The Ontology was expressed in a logic-based language (OWL DL), enabling detailed, sound, meaningful distinctions to be made among the contracts expressed as classes, properties and relations. The OWL DL ontology proposed is checked with the Pellet reasoner. Because it has a finite complexity. The use of a core domain ontology permits us to search for specific component information using intelligent techniques like SPARQL queries. Extending the ontology with no functional properties (Quality of Services attributes), Design Patterns and object properties (hasInvoke, hasResponse, etc.) for dynamic behaviour are key points for our future work.
7 Acknowledgments

This material is partly based upon work supported by the National Science Foundation under Grant No. OISE-0730065. I would like to express my deepest thanks to Comision Mexico-Estados Unidos para el Intercambio Educativo y Cultural (COMEXUS) through the Fulbright Programme, for giving me a grant to support my research in Miami, Florida without which this work would not have been possible, and Florida International University (FIU), School of Computing and Information Sciences. In particular, I would like to thank Dr. S. Masoud Sadjadi and his team for their fruitful discussions and support for my research.

References