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Abstract— A large and diverse group of computational scientific 

research efforts deal with parameterized studies, in which same 

or similar computational tools are applied on different sets of 

data. Such uniform and well-defined analysis efforts can be 

encapsulated as parameter-sweep workflows.  Due to 

computation and data intensive nature, resources that span 

across multiple domains may be needed for timely and efficient 

execution of this type of workflows. In our previous studies, we 

have designed and developed techniques to orchestrate the 

execution of large-scale workflows in a decentralized and 

adaptive manner. Through the usage of generic workflow 

patterns, centralized orchestration of workflows are transformed 

into decentralized and adaptive orchestration without modifying 

the business logic of the workflow. In this study, we propose some 

additional optimization patterns specific to characteristics and 

requirements of parameter-sweep workflows. By exploiting the 

general characteristics of parameter-sweep workflows, we 

provide ways to reduce control and data overheads associated 

with the decentralized orchestration. We also discuss some 

implementation issues that arise from the adoption of these 

optimization patterns.   

Keywords: workflow, DAG, orchestration, optimization, 

parameter study 

I.  INTRODUCTION  

Parameter studies enable the conduct of research for a 

certain experiment on a varying set of data and under various 

possible circumstances. Through the automated design and 

execution of such studies, large amounts of data/parameters can 

be processed and analyzed and as a result more accurate 

research outcomes can be acquired. These types of studies are 

prevalent in a large and diverse group of research fields, such 

as bioinformatics, earthquake science, weather predictions, and 

molecular dynamics. 

Automated design of parameter studies generally results in 

a simple and well-defined structure, which can be easily 

represented as a Directed-Acyclic-Graph (DAG) based 

workflow. A DAG-based workflow encapsulates all the 

computational tasks and data/control dependencies among 

those tasks. Depending on the size and scale of the parameter 

study, these workflows may contain large numbers of 

computational tasks which are generally highly-parallelizable. 

Thus, if available, deploying parallel tasks of such a workflow 

on parallelized resources would significantly reduce the overall 

execution time (makespan) of the workflow.  

Deployment and execution of large number of 

interdependent tasks require utilization of specific tools, 

namely workflow management systems. Workflow 

management systems enable and oversee various stages in the 

lifecycle of a workflow, including the mapping, and 

orchestration stages. During the mapping stage, a workflow 

specification that is free of physical resource details (abstract 

workflow) is translated into one which is associated with actual 

physical resource information (concrete workflow). Then, a 

specific component (workflow execution engine) within the 

workflow management system orchestrates the execution of 

workflow tasks abiding by and following the data/control 

dependencies among them.  
As mentioned earlier, due to highly-parallelizable nature of 

parameter-sweep workflows, those parallel tasks can be ideally 
deployed on parallel resources. Sometimes, these parallel 
resources may span across multiple computational domains, as 
in the case of a hybrid (public + private) cloud, academic cloud 
(e.g. FutureGrid [16]), and national/international 
cyberinfrastructure (e.g. XSEDE [18], Open Science Grid 
[17]). In such a scenario, mapping and orchestration of the 
workflow also spans across multiple domains. In a 
heterogeneous and dynamic computational platform like this, 
several factors cause significant overheads during orchestration 
of the workflow. In our previous study [15], we designed and 
developed a framework to limit the effect of these overheads 
through adopting a decentralized orchestration approach rather 
than a standard centralized orchestration approach.     

In this study, we will build up on our existing decentralized 
orchestration framework. Our optimization efforts are targeted 
especially for large-scale parameter-sweep workflows, 
although they may also be applicable to more general workflow 
instances. By exploiting the specific characteristics of 
parameter-sweep workflows, we will introduce patterns to 
optimize the decentralized orchestration process of such 
workflows. 

Optimization patterns we introduce in this paper suggest 
minor changes in the structure of the workflow and the 
business logic of certain tasks. As long as they are done 
properly, we argue that these changes would not affect the 
validity and integrity of results. To this end, consultation with 
the scientist and/or a domain expert to verify the 



appropriateness of such changes may be optional or required 
depending on the case scenario.  

In the rest of this paper, we first give some background 
information regarding DAGs, parameter-sweep workflows and 
their characteristics in Section 2. In Section 3, we provide basic 
information regarding the decentralized orchestration 
framework this study is built upon. In Section 4, we explain the 
optimization patterns and their merits for parameter studies.  
Section 5 concerns with the implementation issues associated 
with the usage of optimization patterns. In Section 6, we 
overview related literature and Section 7 provides a summary 
of the paper and a brief discussion about further issues. 

II. BACKGROUND 

A. Directed Acyclic Graphs (DAG) and Mapping 

 
Directed Acyclic Graphs (DAG) is an important and 

commonly used method to capture the automated behavior of 
workflows. A DAG successfully encapsulates the 
computational tasks that comprise the workflow as well as the 
control and data dependencies among them. DAG specification 
for a certain research study can be either done directly or can 
be translated from another specification type. For most research 
studies, the same DAG specification can be utilized many 
times with only minimal modifications.   

The specification of a DAG, whether done by the domain 
scientist or a computational expert, normally includes only the 
business logic of the workflow. Details regarding the 
deployment on computational resources are not specified at this 
point. Those details are resolved only right before or during the 
orchestration of the workflow and done mostly by automated 
software tools (e.g. Workflow management system). This 
automated process is referred to as the mapping of workflow 
tasks onto resources and the details of this process are out of 
the scope of this paper.  

B. Workflow Management Systems (WFMS) 

 
Workflow management systems (WFMSs) deal with all 

aspects of the typical lifecycle of a workflow. Lifecycle of a 
workflow basically consists of the design, mapping, 
orchestration, and monitoring stages. They also provide QoS 
and fault-tolerance based services during the lifecycle of a 
workflow.  There are several well-known WFMS software in 
literature [2, 4, 8, 11, 14], each with different research foci and 
agenda. To the best of our knowledge, none of these tools are 
compatible with each other. Thus, after a researcher decides on 
a certain WFMS, she has to comply with the proprietary 
environment of the selected software.  

In terms of the workflow structure they support, WFMSs in 
the current literature are divided into two groups: DAG-based 
[2, 8, 11] and non-DAG-based [4, 14] WFMSs. At this point, 
our studies are focused only on DAG-based workflows.  Future 
research may be conducted to extend our studies to non-DAG-
based workflows as well. 

 

 

 

C. Parameter-Sweep Workflows 

 
Scientific exploration demands repeatable experimentation, 

and sound and reliable analysis. Computational resources have 
provided great means to achieve these on a much larger and 
deeper level in almost all fields of research.   Using 
computational tools, scientists can explore much bigger 
phenomena at much more detail with a higher-level of 
precision. Most of the scientific exploration necessitates the 
same or similar experimentation and analysis tools to be run 
over a wide-ranging spectrum of parameters/conditions. The 
multitude of observations helps the scientist to make better 
decisions concerning her study. Although, such parameter 
studies are conducted by scientists of almost all fields to a 
certain extent, here we especially focus on the ones that are 
compute- and data-intensive in terms of today’s existing 
technological capabilities.  

Due to the repetitive nature of large parameter studies, 
scientists ideally utilize automation tools in this otherwise 
labor-intensive process. DAG-based workflows can easily and 
successfully capture the business logic of most parameter 
studies. After the business logic of the parameter study is 
captured in a DAG-based workflow specification by the 
scientist or a computational expert, it can be handed over to a 
WFMS which will automate the rest of the lifecycle of the 
workflow.  

Fig. 1 illustrates the DAG structure of a typical single-level 
parameter-sweep workflow. The top-level task acts as to 
generate and distribute the input data/parameters that would be 
consumed by the Processing tasks. Each Processing task 
receives a different set of input data/parameters and 
independently executes the same software/service using those 
data/parameters.  The results generated by these Processing 
tasks are then passed on to the Data Aggregation/Post-
Processing task. This task, depending on the specifics of the 
study, performs some sort of data aggregation and/or post-
processing activities using the results acquired from Processing 
tasks.  

In a parameter-sweep workflow, typically, the Processing 
Tasks are the most computation-intensive components of the 
whole workflow. But, also these tasks are embarrassingly-
parallel, meaning they can be executed concurrently on various 
eligible computational resources. Also, the top-level task (i.e. 
Parameter Initialization) and the bottom-level task (i.e. Post-
processing task) are typically more data-intensive in nature 
than Processing tasks. 
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Figure 1.  Single-level parameter-sweep workflow structure 



Fig. 2 illustrates the DAG structure of a typical two-level 

parameter-sweep workflow. These types of workflows are used 

to perform more intense exploration/analysis activities 

iteratively at each level based on the results acquired at the 

previous level.    A less-intensive version of software/service is 

run over a higher-number of Processing tasks at the first level. 

Then, based on the results acquired at the first level, a more 

intense version of the same or different software/service is run 

over a smaller-number of Processing tasks at the second level. 
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Figure 2.  Two-level parameter-sweep workflow structure 

III. DECENTRALIZATED ORCHESTRATION 

During the mapping of workflow tasks onto physical 

resources, the main goal is to achieve the minimum makespan 

possible for the execution of the whole workflow. Accordingly, 

characteristics of tasks (e.g. estimated runtime) and data 

artifacts (e.g. estimated size), as well as the availability and 

characteristics of physical resources play a major role during 

the mapping stage. The resulting workflow specification is 

called a concrete workflow. A concrete workflow may span 

across multiple sites of resources.  
In our previous study [15], we designed and developed a 

framework to adopt a decentralized orchestration approach for 
a multi-site workflow rather than a centralized orchestration 
approach. In the decentralized orchestration approach, 
orchestration of the whole workflow is performed in 
collaboration with local workflow managers at each site. This 
way, the control and communication overheads associated with 
centralized orchestration are minimized. Also, employment of 
local workflow managers at each site improves the accuracy 
and efficiency involved with the resource monitoring activities 
during run-time. 

As part of our framework, we basically transform a single 
workflow specification into several collaborative workflow 
specifications. Then, each collaborative workflow specification 
is orchestrated independently by a peer workflow manager. At 
the end of this process, the orchestration of the whole original 
workflow is accomplished. 
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Figure 3.  DAG specification stages following our decentralized orchestration 

framework 

Fig. 3 illustrates the stages the DAG specification goes 
through from the abstract specification to the point it gets to be 
orchestrated by multiple peer workflow managers according to 
our decentralized orchestration framework. After the Concrete 
DAG is created, the DAG specification is aggregated with 
certain mapping and contact information that allows each peer 
workflow manager to subsequently generate the Transformed 
DAG specification. These Transformed DAG specifications are 
then handed over to local workflow execution engines to be 
orchestrated. A Workflow Process represents that the lifecycle 
of the workflow has reached the stage where its tasks are ready 
to be executed by computational resources.     

Fig. 4 illustrates the DAG Patterns that make up the 
building blocks of DAG-based workflows. These patterns are 
also utilized during the generation of Transformed DAG 
specifications at each site. For more details on these 
transformation activities, please refer to [15]. 

Sequence Pattern

. . . . . .

. . . . . .

Fork/Branch Pattern Join  Pattern  

Figure 4.  DAG Patterns [15] 

A workflow orchestrated according to our decentralized 
orchestration approach still has the exact same computational 
tasks as the original workflow specification, but they are 
scattered across multiple workflow specifications. The 
transformations in the workflow structure are done only to 
facilitate collaborative orchestration, which do not affect the 
business logic at all. 

IV. OPTIMIZATION PATTERNS 

In this section, we will introduce the optimization patterns 

that we employ on our existing decentralized orchestration 

framework. Even though they may be applicable to more 

general instances of workflows as well, these patterns are 



mainly designed to exploit the general characteristics of 

parameter-sweep workflows.   
Optimization patterns that we introduce here suggest minor 

changes in the DAG structure of the workflow. These changes 
are proposed due to the specific nature of a parameter-sweep 
workflow where the dependencies among tasks are much more 
loosely coupled than a more generic workflow instance. Also, 
the relationships among different levels of tasks at a parameter-
sweep workflow are more uniform and flexible than a more 
generic workflow instance. By exploiting these characteristics 
of parameter-sweep workflows, we provide optimizations to 
the decentralized orchestration of such workflows. 

A. Parameter Initialization / Data Distribution 

 
This pattern applies to the Fork/Branch pattern that 

manifests itself between the top-level Parameter Initialization 
task and the lower-level Processing tasks. At a multi-site 
deployment of a large-scale parameter-sweep workflow, all 
these embarrassingly parallel Processing tasks have control and 
data dependency on the single Parameter Initialization task. 
Fig. 5 illustrates a typical scenario for such behavior. Each 
different color notates deployment of a task on a different site. 
Fig. 5 also illustrates the data/control logistics of this pattern 
following a centralized orchestration approach. As seen, all the 
data and control logistics is handled by the centralized 
workflow manager even though the tasks span across multiple 
different sites. This behavior incurs significant control and data 
overhead to the total workflow execution time. 
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Figure 5.  DAG-mapping and centralized orchestration 

Fig. 6 illustrates the overall view for the orchestration of the 

same pattern following our standard decentralized approach. In 

these Figures, dashed lines notate the boundaries for the 

responsibility of each site. And each site employs its own local 

workflow manager. Also, the rectangle boxes that lie between 

two site boundaries illustrate the Synchronization activities 

which are inserted to the DAG specification during the second 

phase of DAG Transformation process (see Fig. 3). Thus, Fig. 

6 illustrates the collaborative DAG structures and the 

interactions among them to ensure synchronization. 

Comparison between Fig. 5 and Fig. 6 shows a significant 

reduction in terms of data and control overhead incurred during 

the orchestration process. 
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Figure 6.  Overall view for the decentralized orchestration 

Due to flexible characteristics of the Parameter 
Initialization task at the top-level of this DAG pattern, we 
propose an optimization pattern as illustrated in Fig. 7. In Fig. 
7, it can be seen that, task A (Parameter Initialization task) has 
been replicated such that each site employs its own copy. As a 
result, 3 collaborative peers can orchestrate their own DAG 
structures completely independent from each other. Thus, the 
orchestration of the presented DAG structure incurs no 
overhead to the workflow execution time.  Notice that, the 
replicated task A is referred as A’ as it may be necessary to 
make minor adjustments in the business logic of task A. We 
will discuss this issue in Section 5.  

A’

. . . . . . . . .

A’ A’

 

Figure 7.  Overall view for the Optimized DAG which is orchestrated in 

decentralized manner 

B. Post-Processing / Data Aggregation 

 
This pattern applies to the Join pattern that manifests itself 

between the Processing tasks and the lower-level Post-
Processing task. At a multi-site deployment of a large-scale 
parameter-sweep workflow, all these embarrassingly parallel 
Processing tasks have control and data dependency on the 
single Post-processing task. Fig. 8 illustrates the data/control 
logistics of this pattern following a centralized orchestration 
approach. As seen, all the data and control logistics is handled 
through the centralized workflow manager even though the 
tasks span across multiple different sites. This behavior incurs 
significant control and data overhead to the total workflow 
execution time. 
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Figure 8.  DAG-mapping and centralized orchestration 

Fig. 9 illustrates the overall view for the orchestration of the 

same pattern following our standard decentralized approach. 

The collaborative DAG structures and the interactions among 

them to ensure synchronization can be seen. Again, comparing 

Fig. 8 and Fig. 9 shows a significant reduction in terms of data 

and control overhead incurred during the orchestration process. 
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Figure 9.  Overall view for the decentralized orchestration 

We propose a corresponding optimization pattern for this 
DAG pattern as illustrated in Fig. 10. In Fig. 10, it can be seen 
that, task B (Post-Processing task) has been replicated such that 
each site employs its own copy. As a result, the collaborative 
peers can perform the Post-processing task at their local site.  
Notice that, the replicated task B is now referred as B’ as it 
may be necessary to make minor adjustments in the business 
logic of task B. Also, notice that, in this case we also need a 
second-level Post-Processing (task B*) to further perform the 
Post-processing on local results.  However, even with the 
inclusion of task B*, the optimized orchestration can help 
reduce the overheads incurred due to data transfers between 
Processing tasks and (original) task B. Due to their nature, most 
scientific applications generate large sizes of output files. 
During the non-optimized orchestration (centralized or 
decentralized) of such a pattern, all of the individual output 
files generated by Processing tasks are required to be 
transferred to a remote site, so that a single task B can perform 
Post-processing activities on all this data. According to our 
optimized orchestration of this pattern, individual output files 
are not required to be transferred to a remote site. Each site 
needs to only transfer the output files generated by the local 
task B’ (that are generally much more modest in size), which 
are then further Post-processed by task B*. 

 

B*
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B’ B’ B’

 

Figure 10.  Overall view for the Optimized DAG which is orchestrated in 

decentralized manner 

V. PROTOTYPE IMPLEMENTATION 

Our prototype implementation is based on Condor 
DAGMan [5] workflow execution engine which is a widely 
used workflow execution tool for a wide variety of scientific 
workflows. The original orchestration approach for Condor 
DAGMan is centralized and it does not perform the kind of 
optimization activities that are proposed in this paper. 

Condor DAGMan specifies the DAG structure of a 
workflow including the tasks and dependencies among them in 
a standard text file. Orchestration of a workflow is basically 
achieved by submitting/launching subsequent tasks that are 
eligible to run as their dependencies are met with the 
completion of previously launched tasks.    

A. Decentralization 

Condor DAGMan orchestrates a DAG-based workflow 
according to the DAG specification representing the 
computational tasks and their control/data dependencies. Due 
to its centralized orchestration approach, tasks that are mapped 
on remotes sites are also submitted, controlled and monitored 
by the same Condor DAGMan instance.  

In our decentralized framework, each site employs its own 
Condor DAGMan instance, and orchestrates its local 
Transformed DAG specification.  Each Condor DAGMan 
instance submits, controls, and monitors tasks that are deployed 
on their local site. Synchronization activities among peer 
Condor DAGMan instances help facilitate the collaborative 
orchestration of the whole workflow. 

Transformation of DAG specification at each site occurs 
independently. In this transformation process, we make use of 
standard Condor DAGMan keywords (e.g. DONE) and utilities 
(e.g. PRE/POST scripts) to provide the necessary changes for 
the local DAG specification. Here, by marking remote tasks 
with the DONE keyword, we let the local Condor DAGMan to 
skip those tasks.  Similarly, by creating and inserting 
PRE/POST scripts at each local site properly, we facilitate the 
synchronization among peer Condor DAGMan instances. Since 
we only make use of these standard Condor DAGMan 
functionalities in our transformation process, no other changes 
are necessary in the system. 

More details regarding the implementation of DAG 
Transformation Process and the prototype implementation 
based on Condor DAGMan can be found in [15] and [13].  



B. Optimization Patterns  

As explained in Section 4, we introduce optimization 
patterns to exploit certain characteristics of large-scale 
parameter-sweep workflows. However, these patterns 
necessitate minor changes to the original DAG structure, which 
in turn may affect the business logic of the workflow 
application. Thus, these structural changes should be verified to 
be appropriate by a domain expert.  After the DAG structure 
change is approved by the domain expert, he/she should also be 
consulted regarding the adjustments intended for Parameter 
Initialization task and Post-processing task. Once the 
appropriate task adjustment methods are agreed upon, these 
methods can be reused multiple times to run similar instances 
of large-scale parameter-sweep workflows.  

As suggested above, the domain expert should contribute to 
the proper method for replicating the Parameter Initialization 
task (see Fig. 7). In some cases, the Parameter Initialization 
task involves generating input data/parameters in a randomized 
way (e.g. Monte Carlo methods). In some other cases, this task 
involves splitting a wide-range of input data/parameters 
uniformly among the Processing tasks. For these and similar 
cases, the proper task adjustment methods are expected to be 
much more trivial than more sophisticated cases.   

The business logic of the Post-processing/Data Aggregation 
tasks also usually consists of standard and well-defined 
behavior, which may be adjusted accordingly through 
consultation with a domain expert. For example, in some cases 
this task involves generating statistical results from the data 
generated by Processing tasks. In some other cases, this task 
mainly involve choosing the best results (or eliminating worst 
results) among all the generated results according to certain 
criteria.  For these and similar cases, the proper task adjustment 
methods are expected to be much more trivial than more 
sophisticated cases. 

After the consultation and proper task adjustment phases 
are completed successfully, these behaviors are needed to be 
specified in the Aggregated DAG specification. At this point, 
we provide this information manually (i.e. tasks to be 
restructured, task adjustment methods). In the next stage of the 
transformation process, each local site comes up with its own 
local transformed DAG specification, similar to the process 
explained in the previous subsection.  Again, since we only 
make use of standard Condor DAGMan functionalities 
throughout the transformation process, no other changes are 
necessary in the system. 

VI. RELATED WORK 

Extensive amount of research has been conducted on 
different aspects of scientific workflow management. A large 
number and variety of workflow management systems [1] have 
been designed and developed mostly resulting in proprietary 
environments and custom goals. However, one of the most 
heavily investigated aspect concerns with the workflow task 
scheduling algorithms [3] at dynamic and heterogeneous 
environments.  Task scheduling under these circumstances is a 
very complicated process, and the quality of it significantly 
affects the quality of mapping and the overall execution time of 
workflows. However, in this paper, we do not address this 
aspect and rely on existing techniques for the mapping stage of 
workflows.   

Pegasus workflow management system [2] also makes use 
of the Condor DAGMan [5] as the underlying workflow 
execution engine. Before the orchestration of the workflow, 
Pegasus goes through some optimization activities. One 
optimization technique, which is named workflow reduction, 
eliminates those tasks in the workflow for which the output 
files have been already generated during previous executions. 
Another optimization technique performs task clustering, so as 
to increase the granularity of tasks and reduce the scheduling 
and orchestration overheads. Task clustering is an especially 
effective technique where a workflow contains large-number of 
short-running tasks.  

ASKALON workflow management system [4] has 
hierarchical architecture for workflow orchestration. It also 
provides some optimization techniques such as clustering of 
tasks similar to Pegasus. It also performs optimization activities 
to reduce data transfer overheads such as archiving and 
compressing files.   

In [6], authors show that the performance of the workflow 
execution engine can be a critical factor in determining the 
workflow completion time. They use Condor DAGMan  as the 
workflow engine, and they analyze the workflow completion 
time by changing system parameters (scheduling interval, 
dispatch rate, job submission rate) and also restructuring the 
workflow (e.g. task clustering).   

There are also several pattern-based studies for workflows 
aimed for business applications [7, 9, 10, 12] that mainly deal 
with decentralization and fault-tolerance aspects of business 
processes. 

VII. CONCLUSION 

In this paper, we propose optimization patterns to improve 
the orchestration efficiency of large-scale parameter-sweep 
workflows. Due to large-scale and highly-parallelizable nature 
of parameter-sweep workflows, computational tasks may span 
across multiple sites of resources. This generally causes 
efficiency problems for the orchestration of such workflows. 
To improve the efficiency, first we suggest employing our 
existing decentralized workflow orchestration framework to 
eliminate various control and data overheads associated with 
the centralized orchestration. To further improve the efficiency 
of the orchestration, we propose the utilization of optimization 
patterns that exploit the general characteristics of parameter-
sweep workflows. These patterns cause minor changes to the 
structure of the original DAG specification and business logic 
of certain tasks. We discuss the potential drawbacks of making 
such changes and argue that in most cases they can be easily 
addressed by incorporating the feedbacks of a domain expert in 
the process. Even though these patterns were designed and 
aimed primarily for parameter-sweep workflows, they may be 
applicable, to certain extent, for more general-purpose large-
scale workflows as well.  

In the future, we would like to further investigate possible 
optimization techniques for orchestration and lifecycle 
management of both parameter-sweep workflows and general-
purpose workflows. We also would like to explore non-DAG-
based workflows and seek ways to extend our decentralized 
orchestration framework and optimization concepts for this 
type of workflows as well.  
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