
Optimization Patterns for the Decentralized

Orchestration of Parameter-Sweep Workflows

Selim Kalayci, S. Masoud Sadjadi

School of Computing and Information Sciences

Florida International University

Miami, FL, USA

{skala001, sadjadi}@cs.fiu.edu

Abstract— A large and diverse group of computational scientific

research efforts deal with parameterized studies, in which same

or similar computational tools are applied on different sets of

data. Such uniform and well-defined analysis efforts can be

encapsulated as parameter-sweep workflows. Due to

computation and data intensive nature, resources that span

across multiple domains may be needed for timely and efficient

execution of this type of workflows. In our previous studies, we

have designed and developed techniques to orchestrate the

execution of large-scale workflows in a decentralized and

adaptive manner. Through the usage of generic workflow

patterns, centralized orchestration of workflows are transformed

into decentralized and adaptive orchestration without modifying

the business logic of the workflow. In this study, we propose some

additional optimization patterns specific to characteristics and

requirements of parameter-sweep workflows. By exploiting the

general characteristics of parameter-sweep workflows, we

provide ways to reduce control and data overheads associated

with the decentralized orchestration. We also discuss some

implementation issues that arise from the adoption of these

optimization patterns.

Keywords: workflow, DAG, orchestration, optimization,

parameter study

I. INTRODUCTION

Parameter studies enable the conduct of research for a

certain experiment on a varying set of data and under various

possible circumstances. Through the automated design and

execution of such studies, large amounts of data/parameters can

be processed and analyzed and as a result more accurate

research outcomes can be acquired. These types of studies are

prevalent in a large and diverse group of research fields, such

as bioinformatics, earthquake science, weather predictions, and

molecular dynamics.

Automated design of parameter studies generally results in

a simple and well-defined structure, which can be easily

represented as a Directed-Acyclic-Graph (DAG) based

workflow. A DAG-based workflow encapsulates all the

computational tasks and data/control dependencies among

those tasks. Depending on the size and scale of the parameter

study, these workflows may contain large numbers of

computational tasks which are generally highly-parallelizable.

Thus, if available, deploying parallel tasks of such a workflow

on parallelized resources would significantly reduce the overall

execution time (makespan) of the workflow.

Deployment and execution of large number of

interdependent tasks require utilization of specific tools,

namely workflow management systems. Workflow

management systems enable and oversee various stages in the

lifecycle of a workflow, including the mapping, and

orchestration stages. During the mapping stage, a workflow

specification that is free of physical resource details (abstract

workflow) is translated into one which is associated with actual

physical resource information (concrete workflow). Then, a

specific component (workflow execution engine) within the

workflow management system orchestrates the execution of

workflow tasks abiding by and following the data/control

dependencies among them.
As mentioned earlier, due to highly-parallelizable nature of

parameter-sweep workflows, those parallel tasks can be ideally
deployed on parallel resources. Sometimes, these parallel
resources may span across multiple computational domains, as
in the case of a hybrid (public + private) cloud, academic cloud
(e.g. FutureGrid [16]), and national/international
cyberinfrastructure (e.g. XSEDE [18], Open Science Grid
[17]). In such a scenario, mapping and orchestration of the
workflow also spans across multiple domains. In a
heterogeneous and dynamic computational platform like this,
several factors cause significant overheads during orchestration
of the workflow. In our previous study [15], we designed and
developed a framework to limit the effect of these overheads
through adopting a decentralized orchestration approach rather
than a standard centralized orchestration approach.

In this study, we will build up on our existing decentralized
orchestration framework. Our optimization efforts are targeted
especially for large-scale parameter-sweep workflows,
although they may also be applicable to more general workflow
instances. By exploiting the specific characteristics of
parameter-sweep workflows, we will introduce patterns to
optimize the decentralized orchestration process of such
workflows.

Optimization patterns we introduce in this paper suggest
minor changes in the structure of the workflow and the
business logic of certain tasks. As long as they are done
properly, we argue that these changes would not affect the
validity and integrity of results. To this end, consultation with
the scientist and/or a domain expert to verify the

appropriateness of such changes may be optional or required
depending on the case scenario.

In the rest of this paper, we first give some background
information regarding DAGs, parameter-sweep workflows and
their characteristics in Section 2. In Section 3, we provide basic
information regarding the decentralized orchestration
framework this study is built upon. In Section 4, we explain the
optimization patterns and their merits for parameter studies.
Section 5 concerns with the implementation issues associated
with the usage of optimization patterns. In Section 6, we
overview related literature and Section 7 provides a summary
of the paper and a brief discussion about further issues.

II. BACKGROUND

A. Directed Acyclic Graphs (DAG) and Mapping

Directed Acyclic Graphs (DAG) is an important and

commonly used method to capture the automated behavior of
workflows. A DAG successfully encapsulates the
computational tasks that comprise the workflow as well as the
control and data dependencies among them. DAG specification
for a certain research study can be either done directly or can
be translated from another specification type. For most research
studies, the same DAG specification can be utilized many
times with only minimal modifications.

The specification of a DAG, whether done by the domain
scientist or a computational expert, normally includes only the
business logic of the workflow. Details regarding the
deployment on computational resources are not specified at this
point. Those details are resolved only right before or during the
orchestration of the workflow and done mostly by automated
software tools (e.g. Workflow management system). This
automated process is referred to as the mapping of workflow
tasks onto resources and the details of this process are out of
the scope of this paper.

B. Workflow Management Systems (WFMS)

Workflow management systems (WFMSs) deal with all

aspects of the typical lifecycle of a workflow. Lifecycle of a
workflow basically consists of the design, mapping,
orchestration, and monitoring stages. They also provide QoS
and fault-tolerance based services during the lifecycle of a
workflow. There are several well-known WFMS software in
literature [2, 4, 8, 11, 14], each with different research foci and
agenda. To the best of our knowledge, none of these tools are
compatible with each other. Thus, after a researcher decides on
a certain WFMS, she has to comply with the proprietary
environment of the selected software.

In terms of the workflow structure they support, WFMSs in
the current literature are divided into two groups: DAG-based
[2, 8, 11] and non-DAG-based [4, 14] WFMSs. At this point,
our studies are focused only on DAG-based workflows. Future
research may be conducted to extend our studies to non-DAG-
based workflows as well.

C. Parameter-Sweep Workflows

Scientific exploration demands repeatable experimentation,

and sound and reliable analysis. Computational resources have
provided great means to achieve these on a much larger and
deeper level in almost all fields of research. Using
computational tools, scientists can explore much bigger
phenomena at much more detail with a higher-level of
precision. Most of the scientific exploration necessitates the
same or similar experimentation and analysis tools to be run
over a wide-ranging spectrum of parameters/conditions. The
multitude of observations helps the scientist to make better
decisions concerning her study. Although, such parameter
studies are conducted by scientists of almost all fields to a
certain extent, here we especially focus on the ones that are
compute- and data-intensive in terms of today’s existing
technological capabilities.

Due to the repetitive nature of large parameter studies,
scientists ideally utilize automation tools in this otherwise
labor-intensive process. DAG-based workflows can easily and
successfully capture the business logic of most parameter
studies. After the business logic of the parameter study is
captured in a DAG-based workflow specification by the
scientist or a computational expert, it can be handed over to a
WFMS which will automate the rest of the lifecycle of the
workflow.

Fig. 1 illustrates the DAG structure of a typical single-level
parameter-sweep workflow. The top-level task acts as to
generate and distribute the input data/parameters that would be
consumed by the Processing tasks. Each Processing task
receives a different set of input data/parameters and
independently executes the same software/service using those
data/parameters. The results generated by these Processing
tasks are then passed on to the Data Aggregation/Post-
Processing task. This task, depending on the specifics of the
study, performs some sort of data aggregation and/or post-
processing activities using the results acquired from Processing
tasks.

In a parameter-sweep workflow, typically, the Processing
Tasks are the most computation-intensive components of the
whole workflow. But, also these tasks are embarrassingly-
parallel, meaning they can be executed concurrently on various
eligible computational resources. Also, the top-level task (i.e.
Parameter Initialization) and the bottom-level task (i.e. Post-
processing task) are typically more data-intensive in nature
than Processing tasks.

A

.

B

.

Post-Processing /

Data Aggregation

Processing

Tasks

Parameter Initialization /

Data Distribution

Figure 1. Single-level parameter-sweep workflow structure

Fig. 2 illustrates the DAG structure of a typical two-level

parameter-sweep workflow. These types of workflows are used

to perform more intense exploration/analysis activities

iteratively at each level based on the results acquired at the

previous level. A less-intensive version of software/service is

run over a higher-number of Processing tasks at the first level.

Then, based on the results acquired at the first level, a more

intense version of the same or different software/service is run

over a smaller-number of Processing tasks at the second level.

A

.

B

.

B

.

Level - 1

Level - 2

Figure 2. Two-level parameter-sweep workflow structure

III. DECENTRALIZATED ORCHESTRATION

During the mapping of workflow tasks onto physical

resources, the main goal is to achieve the minimum makespan

possible for the execution of the whole workflow. Accordingly,

characteristics of tasks (e.g. estimated runtime) and data

artifacts (e.g. estimated size), as well as the availability and

characteristics of physical resources play a major role during

the mapping stage. The resulting workflow specification is

called a concrete workflow. A concrete workflow may span

across multiple sites of resources.
In our previous study [15], we designed and developed a

framework to adopt a decentralized orchestration approach for
a multi-site workflow rather than a centralized orchestration
approach. In the decentralized orchestration approach,
orchestration of the whole workflow is performed in
collaboration with local workflow managers at each site. This
way, the control and communication overheads associated with
centralized orchestration are minimized. Also, employment of
local workflow managers at each site improves the accuracy
and efficiency involved with the resource monitoring activities
during run-time.

As part of our framework, we basically transform a single
workflow specification into several collaborative workflow
specifications. Then, each collaborative workflow specification
is orchestrated independently by a peer workflow manager. At
the end of this process, the orchestration of the whole original
workflow is accomplished.

Abstract

DAG

Concrete

DAG

Mapping Aggregated

DAG

Transformation

Process - 1

SITE - 0

Transformed

DAG
Workflow

Process

Orchestration

SITE - B

Transformation

Process - 2

Transformed

DAG
Workflow

Process

Orchestration

SITE - A

Transformed

DAG
Workflow

Process

Orchestration

SITE - C

Figure 3. DAG specification stages following our decentralized orchestration

framework

Fig. 3 illustrates the stages the DAG specification goes
through from the abstract specification to the point it gets to be
orchestrated by multiple peer workflow managers according to
our decentralized orchestration framework. After the Concrete
DAG is created, the DAG specification is aggregated with
certain mapping and contact information that allows each peer
workflow manager to subsequently generate the Transformed
DAG specification. These Transformed DAG specifications are
then handed over to local workflow execution engines to be
orchestrated. A Workflow Process represents that the lifecycle
of the workflow has reached the stage where its tasks are ready
to be executed by computational resources.

Fig. 4 illustrates the DAG Patterns that make up the
building blocks of DAG-based workflows. These patterns are
also utilized during the generation of Transformed DAG
specifications at each site. For more details on these
transformation activities, please refer to [15].

Sequence Pattern

.

.

Fork/Branch Pattern Join Pattern

Figure 4. DAG Patterns [15]

A workflow orchestrated according to our decentralized
orchestration approach still has the exact same computational
tasks as the original workflow specification, but they are
scattered across multiple workflow specifications. The
transformations in the workflow structure are done only to
facilitate collaborative orchestration, which do not affect the
business logic at all.

IV. OPTIMIZATION PATTERNS

In this section, we will introduce the optimization patterns

that we employ on our existing decentralized orchestration

framework. Even though they may be applicable to more

general instances of workflows as well, these patterns are

mainly designed to exploit the general characteristics of

parameter-sweep workflows.
Optimization patterns that we introduce here suggest minor

changes in the DAG structure of the workflow. These changes
are proposed due to the specific nature of a parameter-sweep
workflow where the dependencies among tasks are much more
loosely coupled than a more generic workflow instance. Also,
the relationships among different levels of tasks at a parameter-
sweep workflow are more uniform and flexible than a more
generic workflow instance. By exploiting these characteristics
of parameter-sweep workflows, we provide optimizations to
the decentralized orchestration of such workflows.

A. Parameter Initialization / Data Distribution

This pattern applies to the Fork/Branch pattern that

manifests itself between the top-level Parameter Initialization
task and the lower-level Processing tasks. At a multi-site
deployment of a large-scale parameter-sweep workflow, all
these embarrassingly parallel Processing tasks have control and
data dependency on the single Parameter Initialization task.
Fig. 5 illustrates a typical scenario for such behavior. Each
different color notates deployment of a task on a different site.
Fig. 5 also illustrates the data/control logistics of this pattern
following a centralized orchestration approach. As seen, all the
data and control logistics is handled by the centralized
workflow manager even though the tasks span across multiple
different sites. This behavior incurs significant control and data
overhead to the total workflow execution time.

A

.

Figure 5. DAG-mapping and centralized orchestration

Fig. 6 illustrates the overall view for the orchestration of the

same pattern following our standard decentralized approach. In

these Figures, dashed lines notate the boundaries for the

responsibility of each site. And each site employs its own local

workflow manager. Also, the rectangle boxes that lie between

two site boundaries illustrate the Synchronization activities

which are inserted to the DAG specification during the second

phase of DAG Transformation process (see Fig. 3). Thus, Fig.

6 illustrates the collaborative DAG structures and the

interactions among them to ensure synchronization.

Comparison between Fig. 5 and Fig. 6 shows a significant

reduction in terms of data and control overhead incurred during

the orchestration process.

A

.

Figure 6. Overall view for the decentralized orchestration

Due to flexible characteristics of the Parameter
Initialization task at the top-level of this DAG pattern, we
propose an optimization pattern as illustrated in Fig. 7. In Fig.
7, it can be seen that, task A (Parameter Initialization task) has
been replicated such that each site employs its own copy. As a
result, 3 collaborative peers can orchestrate their own DAG
structures completely independent from each other. Thus, the
orchestration of the presented DAG structure incurs no
overhead to the workflow execution time. Notice that, the
replicated task A is referred as A’ as it may be necessary to
make minor adjustments in the business logic of task A. We
will discuss this issue in Section 5.

A’

.

A’ A’

Figure 7. Overall view for the Optimized DAG which is orchestrated in

decentralized manner

B. Post-Processing / Data Aggregation

This pattern applies to the Join pattern that manifests itself

between the Processing tasks and the lower-level Post-
Processing task. At a multi-site deployment of a large-scale
parameter-sweep workflow, all these embarrassingly parallel
Processing tasks have control and data dependency on the
single Post-processing task. Fig. 8 illustrates the data/control
logistics of this pattern following a centralized orchestration
approach. As seen, all the data and control logistics is handled
through the centralized workflow manager even though the
tasks span across multiple different sites. This behavior incurs
significant control and data overhead to the total workflow
execution time.

B

.

Figure 8. DAG-mapping and centralized orchestration

Fig. 9 illustrates the overall view for the orchestration of the

same pattern following our standard decentralized approach.

The collaborative DAG structures and the interactions among

them to ensure synchronization can be seen. Again, comparing

Fig. 8 and Fig. 9 shows a significant reduction in terms of data

and control overhead incurred during the orchestration process.

B

.

Figure 9. Overall view for the decentralized orchestration

We propose a corresponding optimization pattern for this
DAG pattern as illustrated in Fig. 10. In Fig. 10, it can be seen
that, task B (Post-Processing task) has been replicated such that
each site employs its own copy. As a result, the collaborative
peers can perform the Post-processing task at their local site.
Notice that, the replicated task B is now referred as B’ as it
may be necessary to make minor adjustments in the business
logic of task B. Also, notice that, in this case we also need a
second-level Post-Processing (task B*) to further perform the
Post-processing on local results. However, even with the
inclusion of task B*, the optimized orchestration can help
reduce the overheads incurred due to data transfers between
Processing tasks and (original) task B. Due to their nature, most
scientific applications generate large sizes of output files.
During the non-optimized orchestration (centralized or
decentralized) of such a pattern, all of the individual output
files generated by Processing tasks are required to be
transferred to a remote site, so that a single task B can perform
Post-processing activities on all this data. According to our
optimized orchestration of this pattern, individual output files
are not required to be transferred to a remote site. Each site
needs to only transfer the output files generated by the local
task B’ (that are generally much more modest in size), which
are then further Post-processed by task B*.

B*

.

B’ B’ B’

Figure 10. Overall view for the Optimized DAG which is orchestrated in

decentralized manner

V. PROTOTYPE IMPLEMENTATION

Our prototype implementation is based on Condor
DAGMan [5] workflow execution engine which is a widely
used workflow execution tool for a wide variety of scientific
workflows. The original orchestration approach for Condor
DAGMan is centralized and it does not perform the kind of
optimization activities that are proposed in this paper.

Condor DAGMan specifies the DAG structure of a
workflow including the tasks and dependencies among them in
a standard text file. Orchestration of a workflow is basically
achieved by submitting/launching subsequent tasks that are
eligible to run as their dependencies are met with the
completion of previously launched tasks.

A. Decentralization

Condor DAGMan orchestrates a DAG-based workflow
according to the DAG specification representing the
computational tasks and their control/data dependencies. Due
to its centralized orchestration approach, tasks that are mapped
on remotes sites are also submitted, controlled and monitored
by the same Condor DAGMan instance.

In our decentralized framework, each site employs its own
Condor DAGMan instance, and orchestrates its local
Transformed DAG specification. Each Condor DAGMan
instance submits, controls, and monitors tasks that are deployed
on their local site. Synchronization activities among peer
Condor DAGMan instances help facilitate the collaborative
orchestration of the whole workflow.

Transformation of DAG specification at each site occurs
independently. In this transformation process, we make use of
standard Condor DAGMan keywords (e.g. DONE) and utilities
(e.g. PRE/POST scripts) to provide the necessary changes for
the local DAG specification. Here, by marking remote tasks
with the DONE keyword, we let the local Condor DAGMan to
skip those tasks. Similarly, by creating and inserting
PRE/POST scripts at each local site properly, we facilitate the
synchronization among peer Condor DAGMan instances. Since
we only make use of these standard Condor DAGMan
functionalities in our transformation process, no other changes
are necessary in the system.

More details regarding the implementation of DAG
Transformation Process and the prototype implementation
based on Condor DAGMan can be found in [15] and [13].

B. Optimization Patterns

As explained in Section 4, we introduce optimization
patterns to exploit certain characteristics of large-scale
parameter-sweep workflows. However, these patterns
necessitate minor changes to the original DAG structure, which
in turn may affect the business logic of the workflow
application. Thus, these structural changes should be verified to
be appropriate by a domain expert. After the DAG structure
change is approved by the domain expert, he/she should also be
consulted regarding the adjustments intended for Parameter
Initialization task and Post-processing task. Once the
appropriate task adjustment methods are agreed upon, these
methods can be reused multiple times to run similar instances
of large-scale parameter-sweep workflows.

As suggested above, the domain expert should contribute to
the proper method for replicating the Parameter Initialization
task (see Fig. 7). In some cases, the Parameter Initialization
task involves generating input data/parameters in a randomized
way (e.g. Monte Carlo methods). In some other cases, this task
involves splitting a wide-range of input data/parameters
uniformly among the Processing tasks. For these and similar
cases, the proper task adjustment methods are expected to be
much more trivial than more sophisticated cases.

The business logic of the Post-processing/Data Aggregation
tasks also usually consists of standard and well-defined
behavior, which may be adjusted accordingly through
consultation with a domain expert. For example, in some cases
this task involves generating statistical results from the data
generated by Processing tasks. In some other cases, this task
mainly involve choosing the best results (or eliminating worst
results) among all the generated results according to certain
criteria. For these and similar cases, the proper task adjustment
methods are expected to be much more trivial than more
sophisticated cases.

After the consultation and proper task adjustment phases
are completed successfully, these behaviors are needed to be
specified in the Aggregated DAG specification. At this point,
we provide this information manually (i.e. tasks to be
restructured, task adjustment methods). In the next stage of the
transformation process, each local site comes up with its own
local transformed DAG specification, similar to the process
explained in the previous subsection. Again, since we only
make use of standard Condor DAGMan functionalities
throughout the transformation process, no other changes are
necessary in the system.

VI. RELATED WORK

Extensive amount of research has been conducted on
different aspects of scientific workflow management. A large
number and variety of workflow management systems [1] have
been designed and developed mostly resulting in proprietary
environments and custom goals. However, one of the most
heavily investigated aspect concerns with the workflow task
scheduling algorithms [3] at dynamic and heterogeneous
environments. Task scheduling under these circumstances is a
very complicated process, and the quality of it significantly
affects the quality of mapping and the overall execution time of
workflows. However, in this paper, we do not address this
aspect and rely on existing techniques for the mapping stage of
workflows.

Pegasus workflow management system [2] also makes use
of the Condor DAGMan [5] as the underlying workflow
execution engine. Before the orchestration of the workflow,
Pegasus goes through some optimization activities. One
optimization technique, which is named workflow reduction,
eliminates those tasks in the workflow for which the output
files have been already generated during previous executions.
Another optimization technique performs task clustering, so as
to increase the granularity of tasks and reduce the scheduling
and orchestration overheads. Task clustering is an especially
effective technique where a workflow contains large-number of
short-running tasks.

ASKALON workflow management system [4] has
hierarchical architecture for workflow orchestration. It also
provides some optimization techniques such as clustering of
tasks similar to Pegasus. It also performs optimization activities
to reduce data transfer overheads such as archiving and
compressing files.

In [6], authors show that the performance of the workflow
execution engine can be a critical factor in determining the
workflow completion time. They use Condor DAGMan as the
workflow engine, and they analyze the workflow completion
time by changing system parameters (scheduling interval,
dispatch rate, job submission rate) and also restructuring the
workflow (e.g. task clustering).

There are also several pattern-based studies for workflows
aimed for business applications [7, 9, 10, 12] that mainly deal
with decentralization and fault-tolerance aspects of business
processes.

VII. CONCLUSION

In this paper, we propose optimization patterns to improve
the orchestration efficiency of large-scale parameter-sweep
workflows. Due to large-scale and highly-parallelizable nature
of parameter-sweep workflows, computational tasks may span
across multiple sites of resources. This generally causes
efficiency problems for the orchestration of such workflows.
To improve the efficiency, first we suggest employing our
existing decentralized workflow orchestration framework to
eliminate various control and data overheads associated with
the centralized orchestration. To further improve the efficiency
of the orchestration, we propose the utilization of optimization
patterns that exploit the general characteristics of parameter-
sweep workflows. These patterns cause minor changes to the
structure of the original DAG specification and business logic
of certain tasks. We discuss the potential drawbacks of making
such changes and argue that in most cases they can be easily
addressed by incorporating the feedbacks of a domain expert in
the process. Even though these patterns were designed and
aimed primarily for parameter-sweep workflows, they may be
applicable, to certain extent, for more general-purpose large-
scale workflows as well.

In the future, we would like to further investigate possible
optimization techniques for orchestration and lifecycle
management of both parameter-sweep workflows and general-
purpose workflows. We also would like to explore non-DAG-
based workflows and seek ways to extend our decentralized
orchestration framework and optimization concepts for this
type of workflows as well.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. OISE-0730065.

REFERENCES

[1] Yu, Jia, and Rajkumar Buyya. "A taxonomy of workflow

management systems for grid computing." Journal of Grid

Computing 3, no. 3-4 (2005): 171-200.

[2] Deelman, Ewa, Gurmeet Singh, Mei-Hui Su, James Blythe,

Yolanda Gil, Carl Kesselman, Gaurang Mehta et al. "Pegasus: A

framework for mapping complex scientific workflows onto

distributed systems." Scientific Programming 13, no. 3 (2005):

219-237.

[3] Yu, Jia, Rajkumar Buyya, and Kotagiri Ramamohanarao.

"Workflow scheduling algorithms for grid computing." In

Metaheuristics for scheduling in distributed computing

environments, pp. 173-214. Springer Berlin Heidelberg, 2008.

[4] Fahringer, Thomas, Radu Prodan, Rubing Duan, Jüurgen Hofer,

Farrukh Nadeem, Francesco Nerieri, Stefan Podlipnig et al.

"Askalon: A development and grid computing environment for

scientific workflows." In Workflows for e-Science, pp. 450-471.

Springer London, 2007.

[5] Condor team, “The directed acyclic graph manager”,

www.cs.wisc.edu/condor/dagmang, 2002.

[6] Singh, Gurmeet, Carl Kesselman, and Ewa Deelman.

"Optimizing grid-based workflow execution." Journal of Grid

Computing 3, no. 3-4 (2005): 201-219.

[7] Wohed, Petia, Wil MP van der Aalst, Marlon Dumas, and

Arthur HM ter Hofstede. “Pattern based analysis of BPEL4WS”.

QUT Technical report, FIT-TR-2002-04, Queensland University

of Technology, Brisbane, 2002.

[8] Oinn, Tom, Matthew Addis, Justin Ferris, Darren Marvin,

Martin Senger, Mark Greenwood, Tim Carver et al. "Taverna: a

tool for the composition and enactment of bioinformatics

workflows." Bioinformatics 20, no. 17 (2004): 3045-3054.

[9] Pantazoglou, Michael, Ioannis Pogkas, and Aphrodite

Tsalgatidou. "Decentralized Enactment of BPEL Processes."

(2013): 1-1.

[10] Yu, Weihai. "Decentralized orchestration of BPEL processes

with execution consistency." In Advances in Data and Web

Management, pp. 665-670. Springer Berlin Heidelberg, 2009.

[11] Berman, Francine, Andrew Chien, Keith Cooper, Jack Dongarra,

Ian Foster, Dennis Gannon, Lennart Johnsson et al. "The GrADS

project: Software support for high-level grid application

development." International Journal of High Performance

Computing Applications 15, no. 4 (2001): 327-344.

[12] Kalayci, Selim, Onyeka Ezenwoye, Balaji Viswanathan, Gargi

Dasgupta, S. Masoud Sadjadi, and Liana Fong. "Design and

implementation of a fault tolerant job flow manager using job

flow patterns and recovery policies." In Service-Oriented

Computing–ICSOC 2008, pp. 54-69. Springer Berlin

Heidelberg, 2008.

[13] Kalayci, Selim, Gargi Dasgupta, Liana Fong, Onyeka

Ezenwoye, and Seyed Masoud Sadjadi. "Distributed and

Adaptive Execution of Condor DAGMan Workflows." In SEKE,

pp. 587-590. 2010.

[14] Taylor, Ian, Matthew Shields, Ian Wang, and Andrew Harrison.

"The triana workflow environment: Architecture and

applications." In Workflows for e-Science, pp. 320-339. Springer

London, 2007.

[15] S. Kalayci and S. M. Sadjadi, "Pattern-based Decentralization

and Run-time Adaptation Framework for Multi-site Workflow

Orchestrations", In Proceedings of The 2013 International

Conference on Software Engineering and Knowledge

Engineering, Boston, USA, July 2013.

[16] “FutureGrid.”. Available: http://futuregrid.org/

[17] “Open Science Grid”. Available:

http://www.opensciencegrid.org.

[18] “XSEDE”. Available: http://www.xsede.org/

