
Architecture of Request Distributor for GPU Clusters

Mani Shafaat Doost, S. Masoud Sadjadi

School of Computing and Information Sciences
Florida International University

11200 SW 8th St ECS 212 Miami, FL 33199 - USA
{mshaf012,sadjadi}@cis.fiu.edu

Jose Ricardo da S. Jr., Marcelo Zamith, Mark Joselli, Esteban Clua

MediaLab
Universidade Federal Fluminense

Rua Passo da Patria, 156 - Niterói, Rio de Janeiro - Brazil
{jricardo,mzamith, mjoselli, esteban}@ic.uff.br

Abstract—The advent of GPU computing has enabled devel-
opment of many strategies for accelerating different kinds of
simulations. Even further, instead of processing an application
by just using one GPU, it is a common to use a collection
of GPUs as a solution. These GPUs can be located in the
same machine, network, or even across a wide area network.
Unfortunately, distribution and management of GPUs requires
additional efforts by the user such as deal with data transfer,
connection and processing among GPUs.

Request distributor for GPU clusters (RDGPUC) is a software
architecture which allows companies, institutes and other users
to share their GPU resources. By using this architecture, each
cluster can have its own software to manage internal resources
and they only need to develop small code to interact with
RDGPUC. This novel design brings flexibility to the system and
allows everyone to share their resources without need to change
their GPU cluster tool. Another interesting part of system is
to allow users to submit requests from all kind of devices and
platforms. Admin of this system is able to specify resource
groups and special schedules for using resources. On the other
hand, end-users can just use a simple interface to submit their
requests on RDGPUC without knowing about internal design
and current status of GPU clusters.

Keywords-cluster computing; GPU; load balance; resource
sharing.

I. INTRODUCTION

Graphics Processing Unit (GPU) computing has become

an important choice for many parallel computational prob-

lems. GPUs are potentially more powerful than CPUs for

processing massively parallel data. The reason behind this

discrepancy is in floating-point capability of GPUs. CPU is

specialized for compute-intensive, highly parallel computa-

tion, but GPU is typically has used for graphics rendering.

Therefore, GPU architecture is designed in such a way

that more transistors are devoted to data processing than

data caching and flow control. Many different non-graphical

computation, simulation and numerical problems, including

Protein Structure Prediction [1], Solution of Linear Equation

Systems [2], Fluid Simulation [3] and others, have been

solved in GPUs.

Nowadays, many GPU Computing systems are starting to

have multiple GPU devices to solve problems [4]. In order

to distribute the workload across multiple GPUs, developer

must manage data exchange between main memory and

these devices, guaranteeing consistency between the mul-

tiple copies of data and making the development for these

architectures is more difficult for the developer.

In order to use GPU resources effectively and avoid of

resource wasting it is better to share resources. There are

different mechanisms for sharing resources, it is possible to

share one GPU among multiuser by installing a hypervisor

on the GPU or just share multiple GPUs among multiple

users. Since most GPU programs are computation intensive

[5] we are going to implement a method which can share

multiple resources among multiple users.

In this paper we present a novel architecture to expose

GPU computation for anyone who is interested in solving

problems or simply study them. By using RDGPUC, user

can automatically scale its problem to runs on many GPUs.

But before that, user needs to model his/her problem in order

to fit into multiples GPUs.

The remainder of this paper is organized as follows. After

referring to related works on resource sharing, in Section

II, we present the Request Distributor for GPU Clusters
(RDGPUC) architecture for automatically manages request

on the collection of available GPUs, in Section III. In Section

IV we present a study case that could benefit from this

architecture in simulating 3D acoustic waves. Finally, in

Section V we present conclusions of the paper.

II. RELATED WORKS

In order to decrease the required time to process large

data information, researches are laying on using multiples

GPUs. Fan et. al. [6] proposed an architecture of a GPU

cluster and demonstrate it feasibility by a flow simulation

using the Boltzmann model with 30 GPUs node.

Hartley et. al [7] use a cluster of collaborate GPUs and

CPUs in order to analyze biomedical images, obtaining

an almost linear speed-up using a both of them in this

heterogeneous architecture.

Abdelkhalek et. al. [8] designed a parallel simulator in

order to solve the acoustic wave equation on a GPU cluster,

using a finite difference approach in both 2D and 3D cases.

In this simulation, up to 8 GPUs is used to make this

simulation.

2012 Third Workshop on Applications for Multi-Core Architecture

978-0-7695-4916-3/12 $26.00 © 2012 IEEE

DOI 10.1109/WAMCA.2012.15

13

Virtual Computing Lab (VCL) is an application which

used for sharing computing resources among multiple users

[9]. VCL allow users to reserve one or more images (opera-

tion system with specific software) and use these resources

during the time of reservation. VCL architecture consists

of simple user interface, database and management node.

However, VCL shares physical resource among multiple

virtual machines, but VCL does not divide an application

among multiple servers.

Method of sharing is the main difference between VCL

and RDGPUC. VCL shares each physical machine among

multiple virtual machines at the same time and it doe not

know anything about the context of each virtual machine.

But RDGPUC shares multiple physical machines for running

one specific application on them. RDGPUC does not know

about the context of the application, but it needs to know

about run-time environment and number of required devices

for distribute this application among multiple GPUs.

III. ARCHITECTURE OF REQUEST DISTRIBUTOR FOR

GPU CLUSTER

RDGPUC has been designed to solve problems related

to collaboration among GPU clusters. It is responsible to

receive requests from user interface and distribute requests

among one or more GPU clusters. When GPU clusters finish

processing one request, RDGPUC will notify user of the

result. Request in RDGPUC can be in variant forms. But in

general, one request consists of one or more kernel codes

which need to run on GPUs. User can submit kernel codes

individually or add a CPU/GPU code together.

In our design, we tried to make a generic design for

managing GPU clusters. Since there are many companies,

universities and other institutes who are using GPU clusters

and each of them have their own regulation and their own

software to manage GPU cluster, in our design we make a

standard interface for communication with RDGPUC.

This application consists of the modules which are shown

in Figure 1. Each module is responsible for one general task.

But it is possible for individual users to add customized

module to the system. In the following sections we are going

to explain each component independently and then we will

describe functionalities of this application.

A. User Interface

In order to make a generic solution, it is better to use a

web-based interface for this module. But since this project

consists of modules which have predefined protocols to

communicate to the other modules, we can have more than

one User Interfaces. For example, it is possible to add a

module which handles requests from Smartphone.

In general, User Interface is responsible to accept requests

from user and put it in the database. Also, it needs to have

other components which allow user to customize his/her

information, review submitted request and view results.

Figure 1. RDGPUC data workflow.

Submitting a request can be done in many forms. It is

possible for user to submit the whole code, kernel code or

executable file. If user decides to submit executable file, then

he/she must specify the required platform for running the

file. But if user submit the kernel code or whole source code,

then Analyzer can review the code an analyze it (described

in section 4.3) which helps to find appropriate resource for

processing this request.

In addition to the code or executable file, user needs to

submit input and output files. Usually in GPU programming,

application works with massive datasets [10], [11], allowing

at least two general options for input/output files. First is

to upload and download files from web interface which

consumes a lot of spaces of database server. And also, this

solution makes system much slower and consumes network

bandwidth for uploading and downloading files and it suffers

from single point of failure.

The second solution is submitting access link and authen-

tication method to the website. In this solution, user does

not need to upload and download files to/from the server and

he/she just submits addresses of files and authentication to

access those files. In this case, GPU clusters are responsible

to download files from the source and upload results back

to the specified address.

B. Database

The database stores users, resources and requests tem-

porary information. Administrator is able to add users and

14

resources to the database. When user submits a request

from User Interface, it will go directly to the database, then

Request Analyzer retrieve information of each request and

after analyzing, it will save the result as one or more jobs to

the database. Resource Allocator receives information from

resources and also retrieves information of resources and

jobs from database, then decide to assign one or many jobs

to each resource. When GPU resources finish processing one

job, they will store the results in the database.

C. Request Analyzer

Sometimes, one request consists of many sub-requests

and Analyzer is responsible for analyzing each request to

determine sub-requests, estimate execution time of each

request and put this information into the database. We save

sub-requests as a job which is ready to send to GPU clusters.

Also, analyzer can make history of resources, requests and

users. By making history of each user, it is easier to esti-

mate execution time of requests and with information from

resources; it is easier to assign each request to appropriate

resource.

D. Resource allocator

The Resource allocator is responsible for making commu-

nication between GPU clusters and RDGPUC. It provides

standard interface for GPU clusters which makes it easier

to send and receive messages to/from RDGPUC. Depend

on different kind of GPU clusters, Resource Allocator can

send request to GPU cluster for processing or receive a

message from GPU cluster of availability of resources.

Also, this component is responsible for receiving result of

process from GPU clusters. Also, it is possible to implement

other component which can analyze the current situation

of resources and develop different algorithms for resource

allocation.

E. GPU clusters

GPU clusters are responsible for executing jobs and this

is the endpoint of our design. As shown in Figure 2,

each GPU cluster has its own management node which is

responsible for communication between Resource Allocator

and GPU resources and also managing GPU resources.

For communication between GPU clusters and Resource

allocator, we use XML-RPC which is easy to implement and

it is reusable in all system. Each GPU cluster can have its

own management system which allows GPU clusters to hide

their sensitive information from our application. But GPU

clusters need to implement one interface for their software

to make a communication to XML-RPC server in Resource

Allocator.

Another responsibility of Management node is managing

internal resources on each GPU cluster. As shown in Figure

2, one easy way to manage Resources is to add an agent on

each GPU resource and then management node manages

Figure 2. GPU cluster’s node communication.

resources by sending messages through to these agents.

Agents are responsible for compiling the code, retrieving

input/output file, running the application, returning results

and also monitoring resources. Depend on requirements

of individual GPU cluster, it is possible to define more

functionalities.

F. Functionality

There are many functionality which has been defined for

each part. In the following paragraphs, we briefly describe

these functionalities.

• Add a Request: User login and add a request to the

system. Request can be submitted in many forms. The

User must upload source code, executable file or kernel

code plus input and output files. Another method is

to allow user to just give a link of input, output and

credentials to access to these files (this may reduce

network overhead). After that the system stores the

request at the database.

• Show Request List: In this part, system shows in-

formation of all submitted request of specific user

to him/her. This information consists of request date,

name, status and etc. By entering each of these requests,

the system will show more details of request or the

result of the request as an output file.

• Show Result: The system shows detailed information

of the request and if the result of request or some part

of it is ready, then system allow user to have access to

the output.

• Edit Profile: The system allows user to change the

information of him/her. In this part the user can change

name, password, email and etc.

• Manage Resources: In this part, administrator can

change the status of resources, add a new resource or re-

move current resources. In order to add a new resource,

the administrator needs to insert all the information of

the new GPU resource.

• Manage Users: In this part, the administrator can

add new users, remove current users and change user

privileges.

15

• Manage User group: The administrator can add each

user to specific user group and also map each user

group to one or more resource group. By using this

method he can manage users to have access to specific

kind of resources.

• Manage Resource group: The administrator can add

each resource to one or more resource group and

manage a group of resources together. He can specify a

schedule for availability of each resource group. Also,

it is possible to add special features for each resource

group.

• Manage Schedules: In this part, the administrator can

make a schedule of availability of a resource group.

• Analyze request: The Request Analyzer retrieves re-

quests from the database and analyze them by using

different methods. It may break down one request to

many smaller requests or make a profile from each

request and then store the result of analyzing at the

database as multiple jobs.

• Fetch Request: Management Nodes in each GPU

cluster may send a message to the resource allocator

and ask for a request, then the Resource Allocator will

send a request to the management node for processing.

• Allocate Request: there are certain resources which

give access to resource allocator to send requests to

them. The Resource Allocator analyzes the situation

of resources and sends the request to one resource for

execution.

• Collect Result: When one GPU cluster finishes a

request, it should send result to the resource allocator

and resource allocator is responsible to receive the

result and put it in to the database.

IV. STUDY CASE: ACOUSTIC WAVE SIMULATION

In order to illustrate the importance of this architec-

ture, we present a study case that demonstrates a parallel

idea for scattering of 2-D acoustic waves in semi-infinite

non-homogeneous medium on heterogeneous cluster based

GPUs. For more information about Physics aspects of acous-

tic simulation, please refer to [12].

Hybrid-cluster is composed of two parts. The first is

responsible for simulating the numerical method, i.e., cal-

culating the value of each domain point. This is done by

GPUs using the CUDA language. The second is responsible

for guaranteeing the correctness of communication among

the nodes and requires synchronization. Thus, for each time

instant, GPUs calculate unknown in values int the simulation

domain and then the communication phase takes place. After

that, each node sends required values to other nodes for the

next instant time, as the domain where the simulation is

performed is divided among the available GPUs.

In order to calculate each value in the domain through

finite difference method on each GPU, it is required the

border data copy among its neighborhood [13], as can be

seen in Figure 3. This way, each GPU kernel is responsible

to process its border at each time step and send them to its

neighborhood. Without using any architecture, additionally

to fit the model in a parallel manner, the management of

data transfer among GPUs also is the user’s responsibility.

Figure 3. Information sharing among GPUs.

Using our proposed architecture, the user only needs to

model its problem to fit among the requested GPUs, being

the architecture responsible to make data transfer and main-

tain the connection among these requested GPUs. Figure 4

illustrate the steps necessary to perform the simulation using

our novel architecture.

In the first step, after logging in the system, the user must

submit its code by using the Web Interface component.

Before submitting its code, the user also must specify how

many GPUs it wants to allocate to process its application.

After this step the user does not need to do anything,

only to wait the result of its program execution. Depending

on the demand of processes to be executed, the Resource
Allocator is able to assign its process to be executed at the

same time of its submission, or schedule it to be processed

when resources are available.

Internally, the Resource Allocator dispatches the appli-

cation to be executed by one or more GPU cluster, through

a message to its Management Node. The Management
Node is responsible to allocate GPU resources in this cluster

and guarantee communication between its own resources and

others Management Node, which frees the user to manages

it by itself.

As is possible to see in Figure 4, each GPU Resource is

managed by an Agent, which is responsible to process GPU

kernels and store the state of each GPU in the cluster. In this

architecture, the Management Node only communicates

with a GPU resource by its Agent through a defined pro-

tocol. As can be observed, for this specific problem, border

data transfer is made by Agent communication, leaving the

Management Node frees for managing other applications

that may be allocated in its cluster.

V. CONCLUSIONS

In this paper, we have discussed about an architecture

which can be used to manage many GPU clusters. Each

16

web interface

submit application

schedule

resource
allocator

schedule application

management
node

agent

process subdomain

agent

process subdomain

send border

send border

return

return

process application

user

return
results

Figure 4. Sequence diagram for the acoustic wave simulation using the proposed architecture.

GPU cluster can have its own software for managing GPU

resources and communicate with RDGPUC by using com-

mon XML-RPC interface. So, it is easier for institutes to

collaborate in this project without sharing information of

their resources. Administrator needs to add resources, users,

resource groups and user groups to the system. User groups

and resource groups bring control over resources. Each

resource group associated to one schedule which shows

availability of resources during the time. Each user groups

can be assigned to one or many resource group and it

means that requests from this user group will go directly

to particular resource group.

As shown in the paper, this software consists of many

modules and for individuals it is easy to add a new module to

extend the software for special requirements of themselves.

Each module is responsible for one special task but it is

possible to extend modules or add new modules, in order to

satisfy special requirements. Different kind of user-interfaces

can be developed for special devices. Artificial intelligent

algorithms can be used in analyzer to estimate execute time

more accurately. And also it is possible to add more features

on management node of each GPU cluster.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. OISE-0730065.

REFERENCES

[1] W. B. Langdon and W. Banzhaf, “A simd interpreter
for genetic programming on gpu graphics cards,”
in Proceedings of the 11th European conference on

Genetic programming, ser. EuroGP’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 73–85. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792694.1792702

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schrder, “Sparse matrix
solvers on the gpu: conjugate gradients and multigrid,” ACM
Trans. Graph, vol. 22, pp. 917–924, 2003.

[3] J. Ricardo da Silva Junior, E. W. Gonzalez Clua, A. Montene-
gro, M. Lage, M. d. A. Dreux, M. Joselli, P. A. Pagliosa, and
C. L. Kuryla, “A heterogeneous system based on GPU and
multi-core CPU for real-time fluid and rigid body simulation,”
International Journal of Computational Fluid Dynamics,
vol. 26, no. 3, pp. 193–204, 2012.

[4] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a
single compute device image in opencl for multiple gpus,”
in Proceedings of the 16th ACM symposium on Principles
and practice of parallel programming, ser. PPoPP ’11.
New York, NY, USA: ACM, 2011, pp. 277–288. [Online].
Available: http://doi.acm.org/10.1145/1941553.1941591

[5] N. Corporation, “Nvidia cuda programming guide,” 2011.

[6] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover,
“Gpu cluster for high performance computing,” in
Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, ser. SC ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 47–. [Online]. Available:
http://dx.doi.org/10.1109/SC.2004.26

[7] T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and
M. Ujaldon, “Biomedical image analysis on a cooperative
cluster of gpus and multicores,” in Proceedings of the 22nd
annual international conference on Supercomputing, ser. ICS
’08. New York, NY, USA: ACM, 2008, pp. 15–25. [Online].
Available: http://doi.acm.org/10.1145/1375527.1375533

17

[8] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and
G. Latu, “Fast seismic modeling and reverse time migration
on a gpu cluster,” in High Performance Computing Simu-
lation, 2009. HPCS ’09. International Conference on, june
2009, pp. 36 –43.

[9] S. Averitt, M. Bugaev, A. Peeler, H. Shaffer, E. Sills, S. Stein,
J. Thompson, and M. Vouk, “Virtual computing laboratory
(vcl),” in Proceedings of International Conference on Virtual
Computing Initiative, may 2007, pp. 1 –16.

[10] D. Cederman and P. Tsigas, “On sorting and load
balancing on gpus,” SIGARCH Comput. Archit. News,
vol. 36, no. 5, pp. 11–18, Jun. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1556444.1556447

[11] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha,
“Gputerasort: high performance graphics co-processor
sorting for large database management,” in Proceedings
of the 2006 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’06. New York,
NY, USA: ACM, 2006, pp. 325–336. [Online]. Available:
http://doi.acm.org/10.1145/1142473.1142511

[12] D. Micha and D. Komatitsch, “Accelerating a three-
dimensional finite-difference wave propagation code using
gpu graphics cards,” Geophysical Journal International,
vol. 182, no. 1, pp. 389–402, 2010. [Online]. Available:
http://dx.doi.org/10.1111/j.1365-246X.2010.04616.x

[13] D. Brandao, M. Zamith, E. Clua, A. Montenegro, A. Bulcao,
D. Madeira, M. Kischinhevsky, and R. C. Leal-Toledo, “Per-
formance evaluation of optimized implementations of finite
difference method for wave propagation problems on gpu
architecture,” Computer Architecture and High Performance
Computing Workshops, International Symposium on, vol. 0,
pp. 7–12, 2010.

18

